

DELIVERABLE REPORT

Deliverable 7.2
Prototype Software for Testing

Grant Agreement number: 289434
Project acronym: BioPreDyn
Project title: From Data to Models: New Bioinformatics Methods

and Tool for Data-Driven Predictive Dynamic
Modeling in Biotechnological Applications

Funding Scheme: Collaborative Project

Due date of deliverable: month 30
Actual submission date: 31.03.2014

Start date of project: 01.12.2011
Duration: until 31.03.2015

Dissemination Level: PP (restricted to program participants)

Organisation name of lead
contractor for this deliverable: CSM P9

Del. 7.2: Prototype software for testing

Introduction
One of BioPreDyn's main objectives is the development of a software platform
integrating several tools for running dry experiments on numerical models. More
specifically, this platform should be an implementation of the systems biology model
building cycle, as defined in deliverable 7.1 (“Specifications for Software Functionality
& GUI”). Deliverable 7.2 is the prototype, or proof of concept, for this integrative
software platform.

As such, it should include as many of the following elements as possible (from D7.1):

• A work flow editor that allows user to edit a file describing the [systems
biology modeling] cycle steps that should be applied to the model as part of
the model life cycle;

• A collection of libraries and tools, developed by the consortium members;
this should be capable of performing one or more of the cycle steps;

• A parser capable of reading a work flow, describing the tasks, and then
passing them to the simulation engine;

• A simulation engine capable of calling the tools (from the collection of tools)
necessary for each task of the work flow.

Figure 1: Proposal of architecture after the requirements expressed
in D7.1.

Del. 7.2: Prototype software for testing

In addition to those high level specifications, a pre-study1 based on cases provided
by several consortium members lead to the identification of the following technical
requirements:

• The developed tool should be as user-friendly as possible, and therefore
requires a graphical user interface;

• As an implementation of the model building cycle, the developed software
should offer modularity when building a numerical experiment;

• Standards for data, model or simulation formats should be used in order to
make the interfacing with other tools easier.

Results
With those requirements in mind, CSM developed a prototype written in Python2, and
made available (through a Subversion3 server) to all consortium members.

Languages
The following languages are currently used in deliverable 7.2:

• As a work flow description language: Simulation Experiment Description
Markup Language4 (SEDML)

• For model representation: Systems Biology Markup Language5 (SBML)
• As a numerical result description language: Numerical Markup Language6

(NuML)
As a consequence, tools to be integrated in the software suite should be compatible
with those technologies, when required.

Architecture

Parser
As SEDML is the chosen language for describing numerical experiments in
BioPreDyn, the prototype uses libSEDML7 as a parser for SEDML files. This library
is currently integrated as a built-in dependency in the BioPreDyn prototype.

As part of the development effort on BioPreDyn, CSM provides feedback and reports
bugs to the developers of libSEDML.

Engine
Developed in Python, the engine of the prototype is divided into five components, as
shown in Figure 2.

1 See attached document IntegratedSoftwareSuiteRequirementsGuide.pdf
2 https://www.python.org/
3 http://subversion.apache.org/
4 http://sed-ml.org/
5 http://sbml.org/Main_Page
6 http://code.google.com/p/numl/
7 https://github.com/fbergmann/libSEDML

Del. 7.2: Prototype software for testing

Each component handles a specific part of the numerical experiment (as defined in
SEDML):

• Model component: for SBML model manipulation and modifications. In
particular, changes in the model (such as changing the initial value of a
parameter, or removing or adding elements) are implemented in this
component.

• Simulation component: handles the different types of simulations to be
executed in the current numerical experiment. In SEDML, a simulation is
defined as an algorithm along with the set of parameters it requires.

Figure 2: Simplified UML class diagram of the BioPreDyn engine

Del. 7.2: Prototype software for testing

• Task component: running a task means executing a simulation with a specific
model. This component handles all the aspects of the execution of a task; this
is where external simulation engines are called. Results of simulations are
also part of this component.

• Data generation component: for post-processing the result of simulations,
and preparing them for output (graphical or not).

• Output component: processes the data generated in the data generation
component. Data can be displayed as a 2D or 3D plot, or exported as a NuML
or CSV file.

Tools
The BioPreDyn prototype relies on several tools for writing or reading specific file
formats, running simulations, displaying results, etc, as pictured in Figure 3:

Among those tools, the built-in dependencies (namely libSEDML, libSBML, libNuML
and libSBMLSim) are compiled and built with the project. External dependencies
have to be installed separately. Among them, BioServices is the deliverable 1.2 of the
BioPreDyn project.

Usage

Installation
The prototype has been tested on the following platforms:

• Ubuntu 12.04 (32 and 64-bit)
• Windows XP, 7 (32-bit)

Figure 3: BioPreDyn engine dependencies

Del. 7.2: Prototype software for testing

The installation process (along with the required dependencies) is detailed in the
installation guide8.

Execution
Once the BioPreDyn prototype is installed, it can be used to run numerical
experiments encoded as SEDML files. Simply open a shell and navigate to the folder
where the prototype is installed, and type the following commands:

cd build/install/bin

This folder contains a main.py file which can be used to run the prototype. To do so,
one can use the following syntax:

python main.py <options>

Depending on the option(s) chosen by the user, various operations can be done.
Valid options are listed below:

• --sedml <path/to/f i le.xml> : opens the input SEDML file, executes the
tasks it contains and process its outputs. Graphical outputs are displayed, if
any; path/to/file.xml must point to a valid SEDML file.

• --output <path/to/output.csv>: write the result of a numerical experiment
(if any) to the input location as a CSV file. This option should be used only
when the opened SEDML file contains one or more “report” elements.

• --output <path/to/output.xml>: identical to the previous one, except that
the result is exported as a NuML file instead.

• --csv <path/to/f i le.csv> : opens the input CSV file and plot its content;
path/to/file.csv must point to a valid CSV file.

• --numl <path/to/f i le.xml>: opens the input NuML file and plot its content;
path/to/file.xml must point to a valid NuML file.

For instance, for running an experiment encoded in the file test_graphical_output.xml
on the CSM repository, one can type:

python main.py --sedml
https://thecosmocompany.com/svn/repos/SVN/BioPreDyn/trunk/Prototyp
e/testing/test_graphical_output.xml

In case the experiment went smoothly, the windows pictured on Figure 4 should be
displayed. They show the evolution of the concentrations of various components
interacting in the model.

For writing the results of another experiment as a NuML file:

python main.py --sedml
https://thecosmocompany.com/svn/repos/SVN/BioPreDyn/trunk/Prototyp
e/testing/test_report.xml --output report.xml

8 See annex : PrototypeUserGuide.pdf

Del. 7.2: Prototype software for testing

This command will create a file called report.xml in the folder where the command
was called (in this case, in <path/to/build/dir>/install/bin).

More information on how to use the prototype can be found in the prototype user
guide9.

Testing

Testing and bug reporting procedure
EVOLVA conducted a series of tests on the above illustrated prototype that CSM has
developed for the BioPreDyn software suite. The prototype consists of a number of
subroutines (tools) which need to be installed before installing the actual software
engine.

Provided with a user manual prepared by CSM each of these subroutines (tools)
were downloaded and installed via the command-line to a computer running Linux.

Every error observed during the installation process of these dependencies was
reported through a ticket system set up by CSM on an internal web page10. For an

9 See annex: PrototypeUserGuide.pdf

Figure 4: Displayed 2D plots after running the experiment encoded in test_graphical_output.xml
SEDML file.

Del. 7.2: Prototype software for testing

end user, these dependencies need to be installed as smoothly as possible; therefore
both corrections to software as well as the user documentation may need
adjustments.

Finally, the source code for the prototype software was obtained by EVOLVA from
the internal CSM web page.

Errors encountered by EVOLVA during this installation were also reported to CSM.
On complete installation of all software dependencies and the prototype itself a set of
tests was run. After successful termination of the test runs the prototype software
without the graphical user interface is considered complete.

The next steps will be to test the prototype even further once the graphical user
interface, as agreed among partners in deliverable WP 7.1, has been implemented
by CSM.

Test cases
The BioPreDyn prototype is tested using a simple model of enzymatic reaction,
based on the work of CWI11. This model was translated in SBML using COPASI and
can be found on the BioPreDyn Subversion server12.

In addition, other SBML models from BioModels13 are used as test cases for the
development of this software tool.

10 https://thecosmocompany.com/biopredyn-trac
11 http://www.ncbi.nlm.nih.gov/pubmed/19215296
12 https://thecosmocompany.com/svn/repos/SVN/BioPreDyn/trunk/Prototype/data/FEBS_copasi.xml
13 http://www.ebi.ac.uk/biomodels-main/

1

BioPreDyn software suite prototype
- Deliverable 7.2 - User guide

Bertrand Moreau, The CoSMo company
2014

Abstract

This document is the user guide for the BioPreDyn software suite prototype (deliverable 7.2).

Table of Contents
1. Preface .. 1

1.1. Purpose of this document ... 1
1.2. Audience ... 1
1.3. Organization .. 1

2. Introduction .. 2
3. Installation ... 2

3.1. Ubuntu 32-bit / 64-bit (11.10 or later) ... 2
3.2. Windows 32 (XP, 7) ... 3

4. Usage .. 6

1. Preface

1.1. Purpose of this document
This document aims at giving the user all the information he/she needs in order to set a suitable
environment for the BioPreDyn software suite prototype (deliverable 7.2 of the BioPreDyn
project), as long as basic instructions on how to use it.

This document does not describe the architecture of the deliverable 7.2 nor gives details about its
implementation; this will be detailed respectively in the requirements guide and the design notes.

1.2. Audience
This document is primarily intended to advanced users willing to test the BioPreDyn software suite
prototype on their own model. As a proof of concept for more advanced versions (deliverables 3.4 /
8.3), very little effort is put on the package user-friendliness; it is assumed that the reader knows how
to compile and build code using GNU make, CMake, or Visual Studio.

1.3. Organization
This guide is divided into four main sections:

• Introduction. A short introduction to the project context, and how the current document fits in
the global picture.

• Installation. How to install a suitable environment for working with the BioPreDyn software
suite prototype on multiple platforms.

• Usage. How to use the BioPreDyn software suite prototype.

BioPreDyn software suite prototype
- Deliverable 7.2 - User guide

2

2. Introduction
This code is the deliverable 7.2 of the BioPreDyn project ("Prototype Software for Testing: User-
friendly version of prototype software for testing in a setting for industrial applications").

For more information about the development tasks related to the BioPreDyn project (and the content
of the deliverable 7.2), please visit the developer's wiki1.

For more information about the BioPreDyn project itself, please refer to the official project website 2.

3. Installation
3.1. Ubuntu 32-bit / 64-bit (11.10 or later)

3.1.1. Dependencies

3.1.1.1. CMake

 sudo apt-get install cmake
 sudo apt-get install cmake-curses-gui

3.1.1.2. Subversion

 sudo apt-get install subversion

3.1.1.3. Python 2.7

 sudo apt-get install python2.7

3.1.1.3.1. pip

 sudo apt-get install python-pip

3.1.1.3.2. Other Python dependencies

 sudo apt-get install python-numpy
 sudo apt-get install python-matplotlib
 sudo apt-get install python-sympy
 sudo pip install bioservices
 sudo pip install lxml
 sudo apt-get install python-pyside

3.1.1.4. SWIG 2.0

 sudo apt-get install swig2.0

1 https://thecosmocompany.com/biopredyn-trac/
2 http://www.biopredyn.eu/

https://thecosmocompany.com/biopredyn-trac/
http://www.biopredyn.eu/
https://thecosmocompany.com/biopredyn-trac/
http://www.biopredyn.eu/

BioPreDyn software suite prototype
- Deliverable 7.2 - User guide

3

3.1.1.5. libXML2

 sudo apt-get install libxml2 libxml2-dev

3.1.1.6. libzip2

 sudo apt-get install libbz2-1.0 libbz2-dev

3.1.1.7. Doxygen

 sudo apt-get install doxygen

3.1.1.8. Graphviz

 sudo apt-get install graphviz graphviz-dev

3.1.2. BioPreDyn integrated software suite prototype

First of all the project source code must be checked-out using Subversion:

 svn co https://thecosmocompany.com/svn/repos/SVN/BioPreDyn/trunk
 biopredyn

If required, use dashuser-biopredyn as a login and Nie8eir2 as a password. When Subversion is
done with it, open a shell, navigate to the freshly checked-out biopredyn folder and type:

 cd biopredyn
 mkdir BUILD
 cd BUILD
 cmake ..
 make
 make test

CMake options can be more finely tuned by using ccmake instead of cmake.

3.2. Windows 32 (XP, 7)

3.2.1. CMake

Download the latest stable version from the CMake download page3 then run the installer and follow
the instructions.

3.2.2. Microsoft Visual Studio 2010

Download Visual C++ 2010 Express from the Visual Studio download page4 then run the executable
and follow the instructions.

3 http://www.cmake.org/cmake/resources/software.html
4 http://www.visualstudio.com/en-us/downloads/download-visual-studio-vs#DownloadFamilies_4

http://www.cmake.org/cmake/resources/software.html
http://www.visualstudio.com/en-us/downloads/download-visual-studio-vs#DownloadFamilies_4
http://www.cmake.org/cmake/resources/software.html
http://www.visualstudio.com/en-us/downloads/download-visual-studio-vs#DownloadFamilies_4

BioPreDyn software suite prototype
- Deliverable 7.2 - User guide

4

3.2.3. Subversion

Download Apache Subversion from the VisualSVN download page5, run the installer and follow the
instructions.

3.2.4. SWIG

The latest version of swigwin can be downloaded from the SWIG download page6. Unzip it, then add
the folder containing swig.exe to the Path environment variable.

3.2.5. Python

Download the Windows installer from the Python download page7, run it and follow the instructions.

3.2.5.1. easy_install

Download ez_setup.py from the setuptools download page8 then open a command prompt, navigate
to the folder where ez_setup.py was downloaded and type:

 python ez_setup.py

Now navigate to the Python installation folder (default C:\Python27) and type:

 cd Tools/Sripts
 python win_add2path.py

This will add useful Python folders to the path.

3.2.5.2. NumPy

Download the win32 installer at the NumPy download page9 and install it.

3.2.5.3. matplotlib

Download the installer for the last version (matplotlib-X.Y.Z.win32-py2.7.exe) at the matplotlib
download page10 and install it.

3.2.5.4. Other Python dependencies

Open a command prompt and type:

 easy_install easydev
 easy_install bioservices
 easy_install lxml
 easy_install PySide
 easy_install sympy

5 http://www.visualsvn.com/downloads/
6 http://www.swig.org/download.html
7 http://www.python.org/download/
8 https://bitbucket.org/pypa/setuptools/downloads
9 http://sourceforge.net/projects/numpy/files/NumPy/1.8.1/numpy-1.8.1-win32-superpack-python2.7.exe/download
10 https://github.com/matplotlib/matplotlib/downloads/

http://www.visualsvn.com/downloads/
http://www.swig.org/download.html
http://www.python.org/download/
https://bitbucket.org/pypa/setuptools/downloads
http://sourceforge.net/projects/numpy/files/NumPy/1.8.1/numpy-1.8.1-win32-superpack-python2.7.exe/download
https://github.com/matplotlib/matplotlib/downloads/
https://github.com/matplotlib/matplotlib/downloads/
http://www.visualsvn.com/downloads/
http://www.swig.org/download.html
http://www.python.org/download/
https://bitbucket.org/pypa/setuptools/downloads
http://sourceforge.net/projects/numpy/files/NumPy/1.8.1/numpy-1.8.1-win32-superpack-python2.7.exe/download
https://github.com/matplotlib/matplotlib/downloads/

BioPreDyn software suite prototype
- Deliverable 7.2 - User guide

5

3.2.6. GnuWin32

The dependencies of this category must be installed in the same folder; it is done automatically for the
first two ones (as win32 installers exist), it has to be done manually for the last one.

3.2.6.1. bzip2

Download the latest bzip2-X.Y.Z-setup.exe from bzip2 download page11 and install it. Add [path/to/
GnuWin32]/include and [path/to/GnuWin32]/lib to the environment Path variable.

3.2.6.2. libiconv

Download the latest libiconv-X.Y.Z-1.exe from libiconv download page12 and install it. As it will
install in the same repository than bzip2, it is not necessary to change the path.

3.2.6.3. libXML2

Download the latest version (libxml2-X.Y.Z.win32.zip) at the XMLSoft download page13 and extract
it. The resulting library folders (i.e. bin, include and bin) must be merged with the ones in GnuWin32
(see bzip2 paragraph above).

3.2.7. Doxygen

Download the latest binary package (doxygen-X.Y.Z-setup.exe) at the Doxygen download page14 and
install it.

3.2.8. Graphviz

Download the latest installer (graphviz-X.Y.msi) at the Graphviz download page15 and execute it.

3.2.9. BioPreDyn integrated software suite prototype

First of all the project source code must be checked-out using Subversion:

 svn co https://thecosmocompany.com/svn/repos/SVN/BioPreDyn/trunk
 biopredyn

If required, use dashuser-biopredyn as a login and Nie8eir2 as a password. When Subversion is
done with it, open a Visual Studio Command Prompt (2010), then navigate to the freshly checked-
out biopredyn folder and type:

 mkdir BUILD
 cd BUILD
 cmake ..
 nmake
 ctest

CMake options can be more finely tuned by using ccmake instead of cmake.

11 http://sourceforge.net/projects/gnuwin32/files/bzip2/
12 http://sourceforge.net/projects/gnuwin32/files/libiconv/1.9.2-1/
13 http://xmlsoft.org/sources/win32/
14 http://www.stack.nl/~dimitri/doxygen/download.html
15 http://www.graphviz.org/Download_windows.php

http://sourceforge.net/projects/gnuwin32/files/bzip2/
http://sourceforge.net/projects/gnuwin32/files/libiconv/1.9.2-1/
http://xmlsoft.org/sources/win32/
http://www.stack.nl/~dimitri/doxygen/download.html
http://www.graphviz.org/Download_windows.php
http://sourceforge.net/projects/gnuwin32/files/bzip2/
http://sourceforge.net/projects/gnuwin32/files/libiconv/1.9.2-1/
http://xmlsoft.org/sources/win32/
http://www.stack.nl/~dimitri/doxygen/download.html
http://www.graphviz.org/Download_windows.php

BioPreDyn software suite prototype
- Deliverable 7.2 - User guide

6

4. Usage
Once the BioPreDyn prototype is installed, it can be used to run numerical experiments encoded as
SEDML files. Simply open a shell or a command prompt, navigate to the folder where the prototype
is installed, and type the following commands:

 cd build/install/bin

This folder contains a main.py file which can be used to run the prototype. To do so, one can use the
following syntax:

python main.py [options]

Depending on the option(s) chosen by the user, various operations can be done. Valid options are
listed below:

• --sedml [path/to/file.xml]: opens the input SEDML file, executes the tasks it contains
and process its outputs. Graphical outputs are displayed, if any; path/to/file.xml must point to a
valid SEDML file.

• --output [path/to/output.csv]: write the result of a numerical experiment (if any) to
the input location as a CSV file. This option should be used only when the opened SEDML file
contains one or more “report” elements.

• --output [path/to/output.xml]: identical to the previous one, except that the result is
exported as a NuML file instead.

• --csv [path/to/file.csv]: opens the input CSV file and plot its content; path/to/file.csv
must point to a valid CSV file.

• --numl [path/to/file.xml]: opens the input NuML file and plot its content; path/to/
file.xml must point to a valid NuML file.

1

Integrated software
suite requirements

Bertrand Moreau, The CoSMo company
2013

Abstract

This document summarizes the requirements for the development of the BioPreDyn integrated software suite
(deliverable 3.4 / 7.2 / 8.3).

Table of Contents
1. Preface .. 1

1.1. Purpose of this document ... 1
1.2. Audience ... 1
1.3. Organization .. 1

2. Introduction .. 2
3. Specifications ... 2

3.1. Description of work .. 2
3.2. Case study ... 3
3.3. Summary ... 5

4. Use cases ... 5
4.1. Systems biology model building cycle implementation ... 5
4.2. Modularity ... 5
4.3. Simulation file standard ... 6
4.4. Validation cases .. 6

5. References ... 6

1. Preface

1.1. Purpose of this document
This document aims at summarizing the requirements for the development of the BioPreDyn
integrated software suite (deliverables 3.4, 7.2 and 8.3). It lists the main specifications as listed in the
official description of work, or gathered by the development team when visiting the project partners.
Critical use cases are then identified using these specifications.

This document does not describe the solution chosen; this will be detailed in the design notes.

1.2. Audience
This document is primarily intended to developers willing to understand the choices made during the
BioPreDyn software suite design stage. It is particularly useful for maintenance and modification
purposes.

1.3. Organization
This guide is divided into four main sections:

Integrated software
suite requirements

2

• Introduction. A short introduction to the project context, and how the current document fits in
the global picture.

• Specifications. Review of the high level objectives of the deliverables 3.4, 7.2 and 8.3, through
the study of the project’s description of work and several visits to the project’s partners.

• Use cases. Formalization of the needs described in the Specifications section into use cases
describing the main aspects and mechanisms to be captured by the design.

• References. Articles and publications related to the project.

2. Introduction
The BioPreDyn1 project aims at standardizing the data regression process in systems biology.
Nowadays, there exists a great variety of very specialized tools in this field: each one of them is capable
of handling one or several steps in the systems biology model building cycle.

Deliverables 3.4, 7.2 and 8.3 of the BioPreDyn project consist in a software tool linking some
of those tools together in a cross-platform, user-friendly framework. This document describes the
requirements for such a tool.

3. Specifications

3.1. Description of work
As a starting point for this analysis we take the official BioPreDyn description of work. In this
document, the integrated software suite requirements are briefly described in two distinct deliverables
(three if we consider D7.2, which is the prototype - or proof of concept - of the two other deliverables):

D3.4) Integrated Suite of Tools: Integrated software-suite for iterative multi-
scale model building providing tools for all the steps in the modeling cycle;
documentation describing the suite, incl. algorithm comparison and applications

D7.2) Prototype Software for Testing: User-friendly version of prototype software
for testing in a setting for industrial applications.

D8.3) Integrate Software Suite: Integrated software suite implementing the methods
and tools developed during this project in an interoperable, user-friendly and well-
supported way

A few keywords can be extracted from these descriptions:

• Integrated software suite. The objective of those deliverables therefore consist in combining
several systems biology modeling tools together. Most of those tools are developed or maintained
by consortium partners, but third-party tools will be considered. Tools used by consortium members
include DataRail2, CellNOpt 3, AMIGO4, COPASI5, Cytoscape 6...

• Modeling cycle. The systems biology modeling cycle (as defined by the consortium) is consists
in an eleven step cycle covering the main aspects of modeling, from data generation to model
validation.

1 http://www.biopredyn.eu/
2 http://code.google.com/p/sbpipeline/wiki/DataRail
3 http://www.cellnopt.org/
4 http://www.iim.csic.es/~amigo/index.html
5 http://www.copasi.org/tiki-view_articles.php
6 http://www.cytoscape.org/

http://www.biopredyn.eu/
http://code.google.com/p/sbpipeline/wiki/DataRail
http://www.cellnopt.org/
http://www.iim.csic.es/~amigo/index.html
http://www.copasi.org/tiki-view_articles.php
http://www.cytoscape.org/
http://www.biopredyn.eu/
http://code.google.com/p/sbpipeline/wiki/DataRail
http://www.cellnopt.org/
http://www.iim.csic.es/~amigo/index.html
http://www.copasi.org/tiki-view_articles.php
http://www.cytoscape.org/

Integrated software
suite requirements

3

Specifications [1]: eleven step systems biology model building cycle
The software suite should therefore cover most of these steps, through the tools it will aggregates.

• User-friendly. The chosen implementation of the BioPreDyn software suite will have to be
easily usable by non-developer people; a graphical user interface is required here.

3.2. Case study
As a pre-study for the software suite development, several tools and work flows used in the consortium
were investigated. It aimed at detecting additional needs or constraints not expressed in the original
description of work, and include them in the final design.

3.2.1. AMIGO

Summary. AMIGO7 is a Matlab8 tool box for systems biology model identification. It accepts
Matlab, Fortran and SBML files as input model files, and Matlab files as input data files. Model
identification steps can be generated in C or Fortran before being executed in order to improve
performances.

Languages. Matlab, C, Fortran

Model building cycle steps. The following steps of the systems biology model building cycle are
implemented in AMIGO:

• 4. A priori identifiability analysis

• 5. Model fitting / Parameter estimation

• 6. A posteriori identifiability analysis

• 9. Optimal experimental design (OED)

• 10. Global sensitivity analysis

Needs. AMIGO developers expressed the following needs for the integrated software suite:

• Data alignment standards

7 http://www.iim.csic.es/~amigo/index.html
8 http://www.mathworks.com/products/matlab/index.html

http://www.iim.csic.es/~amigo/index.html
http://www.mathworks.com/products/matlab/index.html
http://www.iim.csic.es/~amigo/index.html
http://www.mathworks.com/products/matlab/index.html

Integrated software
suite requirements

4

• Portable task, experiment and report generation

• Interoperability with third-party solvers

3.2.2. Fly suite

Summary. Collection of tools dedicated to developmental gene regulatory network9 (GRN) study
in Drosophila melanogaster embryos. The different tools cover the analysis from the embryo picture
analysis to the GRN weight inference from experimental data:

• fly_gui is a Java software tool for gene expression profile extraction from stained fly embryo
pictures. It generates custom data files containing the gene expression data for each gene, time point
and cell nucleus in the selected stripe.

• fly_sa is a C++ tool implementing a parallel version of the Lam simulated annealing algorithm
applied to GRN inference.

• Python scripts are used besides those tools in order to compute intermediate values such as the
promoter strength, diffusion parameters... and write them in the data file.

Languages. Java, C++, Python.

Model building cycle. The following steps of the systems biology model building cycle are
implemented in the fly suite:

• 1. Data extraction

• 2. Exploratory data analysis

• 5. Model fitting / Parameter estimation

Needs. Fly suite developers expressed the following needs regarding the integration of their tools
in the BioPreDyn software suite:

• Interoperability with third-party solvers

• Standard data-alignment tools (compatibility with SBML)

3.2.3. COPASI

Summary. COPASI10 is a C++ software tool for biochemical networks analysis; it implements
a dedicated language called CopasiML11 for encoding all the aspects of a COPASI simulation.
COPASI accepts SBML as an input format for biochemical models.

Languages. C++, Qt.

Model building cycle. The following steps of the systems biology model building cycle are
implemented in COPASI:

• 4. A priori identifiability analysis

• 5. Model fitting / Parameter estimation

• 6. A posteriori identifiability analysis

Needs. COPASI developers expressed the following needs regarding the integration of their tools
in the BioPreDyn software suite:

9 http://en.wikipedia.org/wiki/Gene_regulatory_network
10 http://www.copasi.org/tiki-view_articles.php
11 http://www.copasi.org/static/schemadoc/

http://en.wikipedia.org/wiki/Gene_regulatory_network
http://www.copasi.org/tiki-view_articles.php
http://www.copasi.org/static/schemadoc/
http://en.wikipedia.org/wiki/Gene_regulatory_network
http://www.copasi.org/tiki-view_articles.php
http://www.copasi.org/static/schemadoc/

Integrated software
suite requirements

5

• Interoperability with third-party tools (AMIGO)

3.3. Summary
With only three software tools / work flows investigated, several common characteristics appear:

• Programming languages. The described tools use a wide spectrum of programming languages:
C, C++, Java, Matlab, Fortran...

• Data / model alignment. Portable standard formats for exchanging models and / or data are
a major concern for all the development teams we met during this preliminary investigation; one
model format seems to emerge: SBML. Besides, a format encoding the model, the simulation, the
initial conditions and the results in a same file is requested.

• Systems biology cycle steps. Several steps of the model building cycle are covered by the
tools described here, and several are not. Most developers / users requested the possibility to use
alternative tools for specific steps in their analysis pipelines.

4. Use cases
In this chapter, we formalize the main features to be captured by the integrated software suite into
use cases.

4.1. Systems biology model building cycle
implementation

Model building steps. The chosen architecture should consist in an implementation of the systems
biology model building cycle. It should allow modelers to execute all the steps of this cycle on a given
model with a given data set.

Integration of BioPreDyn tools. As a part of the BioPreDyn project, the resulting software
suite should use as many software tools developed within the consortium as possible, and integrate
them as building blocks for the steps they cover.

Graphical user interface. As a tool intended to non-developers, the BioPreDyn software suite
should be as user-friendly as possible, and give access to all its functionalities through a convenient
graphical user interface.

4.2. Modularity
Sparse model building cycle. Not all the biochemical models use all the steps described in the
systems biology model building cycle; most of them use only a subset of those steps. As a consequence,
the chosen design should allow any combination of operation on the input model file.

Use cases [1]: representation of a generic analysis pipeline

Integrated software
suite requirements

6

Third party components. The BioPreDyn integrated software suite should not be limited to
consortium tools only, and should allow third-party tool integration as model building blocks.

4.3. Simulation file standard
Standard formats. In order to be easily interfaced with other tools, the integrated software suite
should be compatible with reference biochemical model and data formats.

Simulation formats. Model and data are closely related in the described model building cycle; each
output model file should therefore be associated with the data used for model calibration. Similarly,
the conditions according to which the model should be simulated should be specified in the model
file, along with the results of this simulation. Such model / data structures are described both in SED-
ML and SBRML languages.

4.4. Validation cases
Systems biology model building cycle prototype. A simple example of systems biology
model (such as the one described in [3]) should be implemented as a proof of concept of the
BioPreDynsoftware suite.

BioPreDyn use cases. The BioPreDyn description of work defines four biological modeling
problems:

• Animal developmental gene regulatory networks

• Large-scale models of microorganisms

• Signaling and regulatory networks in cells

• Biotechnological production processes

As a validation step, each BioPreDyn use case analysis pipeline should be executed using the
integrated software suite.

5. References
• [1] Balsa-Canto, E., Banga, J. R. (2011). AMIGO, a toolbox for advanced model identification

in systems biology using global optimization.12 Bioinformatics (Oxford, England), 27(16), 2311–
3. doi:10.1093/bioinformatics/btr370

• [2] Hoops, S., Sahle, S., Gauges, R., Lee, C., Pahle, J., Simus, N., Singhal, M., et al. (2006).
COPASI--a COmplex PAthway SImulator.13 Bioinformatics (Oxford, England), 22(24), 3067–74.
doi:10.1093/bioinformatics/btl485

• [3] Ashyraliyev, M., Fomekong-Nanfack, Y., Kaandorp, J. a, Blom, J. G. (2009). Systems biology:
parameter estimation for biochemical models.14 The FEBS journal, 276(4), 886–902. doi:10.1111/
j.1742-4658.2008.06844.x

• [4] Jaqaman, K., Danuser, G. (2006). Linking data to models: data regression.15 Nature reviews.
Molecular cell biology, 7(11), 813–9. doi:10.1038/nrm2030

• [5] Chu, K.-W., Deng, Y., Reinitz, J. (1999). Parallel Simulated Annealing by Mixing of States.16

Journal of Computational Physics, 148(2), 646–662. doi:10.1006/jcph.1998.6134

12 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3150037/?report=abstract
13 http://www.ncbi.nlm.nih.gov/pubmed/17032683
14 http://www.ncbi.nlm.nih.gov/pubmed/19215296
15 http://www.ncbi.nlm.nih.gov/pubmed/17006434
16 http://linkinghub.elsevier.com/retrieve/pii/S0021999198961344

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3150037/?report=abstract
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3150037/?report=abstract
http://www.ncbi.nlm.nih.gov/pubmed/17032683
http://www.ncbi.nlm.nih.gov/pubmed/19215296
http://www.ncbi.nlm.nih.gov/pubmed/19215296
http://www.ncbi.nlm.nih.gov/pubmed/17006434
http://linkinghub.elsevier.com/retrieve/pii/S0021999198961344
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3150037/?report=abstract
http://www.ncbi.nlm.nih.gov/pubmed/17032683
http://www.ncbi.nlm.nih.gov/pubmed/19215296
http://www.ncbi.nlm.nih.gov/pubmed/17006434
http://linkinghub.elsevier.com/retrieve/pii/S0021999198961344

Integrated software
suite requirements

7

• [6] Köhn, D., Novere, N. Le. (2008). SED-ML–an XML format for the implementation of the
MIASE guidelines. 17 Computational Methods in Systems Biology, 176–190.

• [7] Dada, J. O., Spasic, I., Paton, N. W., Mendes, P. (2010). SBRML: a markup language for
associating systems biology data with models.18 Bioinformatics (Oxford, England), 26(7), 932–8.
doi:10.1093/bioinformatics/btq069

17 http://www.springerlink.com/index/N67N137071431XT7.pdf
18 http://www.ncbi.nlm.nih.gov/pubmed/20176582

http://www.springerlink.com/index/N67N137071431XT7.pdf
http://www.springerlink.com/index/N67N137071431XT7.pdf
http://www.ncbi.nlm.nih.gov/pubmed/20176582
http://www.ncbi.nlm.nih.gov/pubmed/20176582
http://www.springerlink.com/index/N67N137071431XT7.pdf
http://www.ncbi.nlm.nih.gov/pubmed/20176582

	Deliverable_7.2
	PrototypeUserGuide
	BioPreDyn software suite prototype - Deliverable 7.2 - User guide
	Table of Contents
	1. Preface
	1.1. Purpose of this document
	1.2. Audience
	1.3. Organization

	2. Introduction
	3. Installation
	3.1. Ubuntu 32-bit / 64-bit (11.10 or later)
	3.1.1. Dependencies
	3.1.1.1. CMake
	3.1.1.2. Subversion
	3.1.1.3. Python 2.7
	3.1.1.3.1. pip
	3.1.1.3.2. Other Python dependencies

	3.1.1.4. SWIG 2.0
	3.1.1.5. libXML2
	3.1.1.6. libzip2
	3.1.1.7. Doxygen
	3.1.1.8. Graphviz

	3.1.2. BioPreDyn integrated software suite prototype

	3.2. Windows 32 (XP, 7)
	3.2.1. CMake
	3.2.2. Microsoft Visual Studio 2010
	3.2.3. Subversion
	3.2.4. SWIG
	3.2.5. Python
	3.2.5.1. easy_install
	3.2.5.2. NumPy
	3.2.5.3. matplotlib
	3.2.5.4. Other Python dependencies

	3.2.6. GnuWin32
	3.2.6.1. bzip2
	3.2.6.2. libiconv
	3.2.6.3. libXML2

	3.2.7. Doxygen
	3.2.8. Graphviz
	3.2.9. BioPreDyn integrated software suite prototype

	4. Usage

	IntegratedSoftwareSuiteRequirementsGuide
	Integrated software suite requirements
	Table of Contents
	1. Preface
	1.1. Purpose of this document
	1.2. Audience
	1.3. Organization

	2. Introduction
	3. Specifications
	3.1. Description of work
	3.2. Case study
	3.2.1. AMIGO
	3.2.2. Fly suite
	3.2.3. COPASI

	3.3. Summary

	4. Use cases
	4.1. Systems biology model building cycle implementation
	4.2. Modularity
	4.3. Simulation file standard
	4.4. Validation cases

	5. References

