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Project Number 1 289434 Project Acronym 2 BioPreDyn

One form per project

General information

Project title 3
From Data to Models: New Bioinformatics Methods and Tools for Data-Driven
Predictive Dynamic Modelling in Biotechnological Applications

Starting date 4 The first day of the month after the signature by the Commission

Duration in months 5 36

Call (part) identifier 6 FP7-KBBE-2011-5

Activity code(s) most
relevant to your topic 7

KBBE.2011.3.6-01:
Increasing the
accessibility, usability and
predictive capacities of
bioinformatics tools for
biotechnology applications

Free keywords 8
multi-scale network modelling, non-linear optimisation,
reverse-engineering, model analysis, validation,
and calibration, software tools, high-performance
computing, biotechnological applications

Abstract 9

Currently, biologists are collecting enormous amounts of ‘omics’ data in a vast number of different databases.
Predictive, data-driven computational models are needed to understand the complex, multi-scale biological
networks underlying these high-throughput datasets. Such models are non-linear and contain many parameters,
which are difficult (or impossible) to measure directly. Instead, parameters need to be inferred from data. This
approach is called reverse-engineering. It has tremendous potential for several areas, such as biotechnology
and systems biology, since it allows us to develop models with unprecedented accuracy and predictive power.
This is achieved through an iterative refinement of our models compared to quantitative ‘omics’ data, a process
called the systems-biology modelling cycle. Many methods have been developed that deal with specific steps in
this cycle (data analysis, model building/discrimination, parameter estimation/identifiability analysis, uncertainty
quantification, and optimal experimental design), but we still lack an over-arching, easy-to-use software
framework that supports the modelling cycle in its entirety, allowing its widespread application. This project
aims at improving accessibility of the data, and developing novel algorithms and tools implemented in such a
general framework, which will enable the efficient transfer of cutting-edge modelling and optimisation methods
from an academic research setting to private biotechnology partners. We will use representative biological and
biotechnological applications as benchmark problems to develop robust and generally applicable methodology.
The availability of such tools to the biotechnology sector (and other industries) will greatly enhance our ability to
design and optimise complex production processes, especially those of nutraceuticals, biopharmaceuticals, or
fine chemicals based on engineered organisms such as bacteria, yeast or plants.
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Project Number 1 289434 Project Acronym 2 BioPreDyn

List of Beneficiaries

No Name Short name Country
Project entry
month10

Project exit
month

1 FUNDACIO PRIVADA CENTRE DE REGULACIO GENOMICA CRG Spain 1 36

2 AGENCIA ESTATAL CONSEJO SUPERIOR DE INVESTIGACIONES
CIENTIFICAS CSIC Spain 1 36

3 EUROPEAN MOLECULAR BIOLOGY LABORATORY EMBL Germany 1 36

4 UNIVERSITEIT VAN AMSTERDAM UvA Netherlands 1 36

5 STICHTING CENTRUM VOOR WISKUNDE EN INFORMATICA CWI Netherlands 1 36

6 FONDAZIONE TELETHON FTELE.IGM Italy 1 36

7 THE UNIVERSITY OF MANCHESTER UNIMAN United Kingdom 1 36

8 THE UNIVERSITY OF SHEFFIELD USFD United Kingdom 1 36

9 THE COSMO COMPANY SAS CSM France 1 36

10 INSILICO BIOTECHNOLOGY AG INSIL Germany 1 36

11 FLUXOME SCIENCES A/S FS Denmark 1 36



A3:
Budget Breakdown

289434 BioPreDyn - Part A - 2011-07-29 12:05 -  Page 6 of 6

Project Number 1 289434 Project Acronym 2 BioPreDyn

One Form per Project

Estimated eligible costs (whole duration of the project)Participant
number
in this

project 11

Participant
short name

Fund.
%12 Ind. costs13 RTD /

Innovation
(A)

Demonstration
(B)

Management
(C)

Other (D)
Total

A+B+C+D

Total
receipts

Requested
EU

contribution

1 CRG 75.0 T 348,800.00 0.00 184,387.20 32,000.00 565,187.20 0.00 477,987.00

2 CSIC 75.0 A 426,860.00 0.00 0.00 0.00 426,860.00 0.00 320,145.00

3 EMBL 75.0 T 229,241.60 0.00 0.00 0.00 229,241.60 0.00 171,931.00

4 UvA 75.0 A 409,657.00 0.00 0.00 0.00 409,657.00 0.00 307,242.00

5 CWI 75.0 A 356,571.00 0.00 0.00 0.00 356,571.00 0.00 267,428.00

6 FTELE.IGM 75.0 T 153,600.00 0.00 0.00 0.00 153,600.00 0.00 115,200.00

7 UNIMAN 75.0 T 343,804.80 0.00 0.00 0.00 343,804.80 0.00 257,853.00

8 USFD 75.0 T 388,320.00 0.00 0.00 0.00 388,320.00 0.00 291,240.00

9 CSM 75.0 F 106,185.60 0.00 0.00 131,860.80 238,046.40 0.00 211,500.00

10 INSIL 75.0 T 345,600.00 0.00 0.00 0.00 345,600.00 0.00 259,200.00

11 FS 75.0 T 333,032.00 0.00 0.00 0.00 333,032.00 0.00 249,774.00

Total 3,441,672.00 0.00 184,387.20 163,860.80 3,789,920.00 0.00 2,929,500.00

Note that the budget mentioned in this table is the total budget requested by the Beneficiary and associated Third Parties.



* The following funding schemes are distinguished

Collaborative Project (if a distinction is made in the call please state which type of Collaborative project is referred to: (i) Small
of medium-scale focused research project, (ii) Large-scale integrating project, (iii) Project targeted to special groups such as
SMEs and other smaller actors), Network of Excellence, Coordination Action, Support Action.

1. Project number

The project number has been assigned by the Commission as the unique identifier for your project, and it cannot be changed.
The project number should appear on each page of the grant agreement preparation documents to prevent errors during
its handling.

2. Project acronym

Use the project acronym as indicated in the submitted proposal. It cannot be changed, unless agreed during the negotiations.
The same acronym should appear on each page of the grant agreement preparation documents to prevent errors during
its handling.

3. Project title

Use the title (preferably no longer than 200 characters) as indicated in the submitted proposal. Minor corrections are possible if
agreed during the preparation of the grant agreement.

4. Starting date

Unless a specific (fixed) starting date is duly justified and agreed upon during the preparation of the Grant Agreement, the
project will start on the first day of the month following the entry info force of the Grant Agreement (NB : entry into force =
signature by the Commission). Please note that if a fixed starting date is used, you will be required to provide a detailed
justification on a separate note.

5. Duration

Insert the duration of the project in full months.

6. Call (part) identifier

The Call (part) identifier is the reference number given in the call or part of the call you were addressing, as indicated in the
publication of the call in the Official Journal of the European Union. You have to use the identifier given by the Commission in
the letter inviting to prepare the grant agreement.

7. Activity code

Select the activity code from the drop-down menu.

8. Free keywords

Use the free keywords from your original proposal; changes and additions are possible.

9. Abstract

10. The month at which the participant joined the consortium, month 1 marking the start date of the project, and all
other start dates being relative to this start date.

11. The number allocated by the Consortium to the participant for this project.

12. Include the funding % for RTD/Innovation – either 50% or 75%

13. Indirect cost model
A: Actual Costs
S: Actual Costs Simplified Method
T: Transitional Flat rate
F :Flat Rate
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LIST OF WORK PACKAGES (WP)

WP
Number
53

WP Title
Type of
activity 54

Lead
beneficiary
number 55

Person-
months 56

Start
month
57

End
month
58

WP 1 Database Integration & Exploitation RTD 6 41.00 1 18

WP 2 Visualisation Tools for Data & Model
Building RTD 8 20.20 1 18

WP 3 Integrated Software Tools for the Modelling
Cycle RTD 2 141.00 1 36

WP 4 Application: Large-scale Models of
Microorganisms RTD 7 47.00 1 36

WP 5 Application: Signalling & Regulatory
Networks in Cells RTD 3 45.00 13 36

WP 6 Application: Developmental Gene
Regulatory Networks in Animals RTD 4 50.60 13 36

WP 7 Application: Biotechnological Production
Processes RTD 11 55.00 1 36

WP 8 Dissemination, Exploitation & Training OTHER 9 29.00 1 36

WP 9 Project Management MGT 1 10.00 1 36

Total 438.80
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List of Deliverables - to be submitted for review to EC

Delive-
rable
Number
61

Deliverable Title
WP
number
53

Lead benefi-
ciary number

Estimated
indicative
person-
months

Nature 62

Dissemi-
nation level
63

Delivery date
64

D1.1 Database
Infrastructure 1 6 6.00 R PU 18

D1.2 Database/Tools
Interface 1 3 6.00 R PU 18

D1.3 Integration
Workflows 1 9 10.00 R PU 18

D1.4 Data Integration
Tools 1 9 10.00 R PU 18

D1.5 Model Data File
Editor 1 9 9.00 R PU 18

D2.1 GPLVM
Software 2 8 6.00 R PU 18

D2.2
DataRail
Visualisation
Tools

2 3 8.00 R PU 18

D2.3
Spatial
Visualisation
Tools

2 4 6.20 R PU 18

D3.1 Bayesian
Inference Tools 3 8 27.00 R PU 24

D3.2 Parameter
Estimation Tools 3 2 29.00 R PU 18

D3.3
Multi-objective
Optimisation
Tools

3 4 39.00 R PU 36

D3.4 Integrated Suite
of Tools 3 9 46.00 R PU 36

D4.1
Reconstruction
of E. coli
metabolism

4 7 6.00 R PU 18

D4.2
Genome-wide
Kinetic Model of
S. cervisiae

4 2 6.00 R PU 18

D4.3
Reconstruction
of CHO Cell
Metabolism

4 6 6.00 R PU 18

D4.4
Genome-wide
Kinetic Model of
E. coli

4 7 8.00 R PU 18
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Delive-
rable
Number
61

Deliverable Title
WP
number
53

Lead benefi-
ciary number

Estimated
indicative
person-
months

Nature 62

Dissemi-
nation level
63

Delivery date
64

D4.5
Gene Regulatory
Network of E.
coli

4 7 9.00 R PU 36

D4.6

Combined
Metabolic/
Regulatory
Model of E. coli

4 10 12.00 R PU 36

D5.1
Algorithms for
Integration of
Signalling Data

5 3 9.00 R PU 18

D5.2

Reconstruction
of CHO
Signalling
Networks

5 10 12.00 R PU 36

D5.3
Kinetic Models of
CHO Signalling
Networks

5 10 12.00 R PU 36

D5.4

Integrated
Signalling/
Metabolic
Models (CHO)

5 10 12.00 R PU 36

D6.1
Datasets for
Spatial Gene
Expression

6 4 18.00 R PU 18

D6.2
Animal
Regulatory
Network Models

6 4 32.60 R PU 36

D7.1

Specifications
for Software
Functionality &
GUI

7 11 3.00 R PP 18

D7.2
Prototype
Software for
Testing

7 9 6.00 R PP 18

D7.3

Models:
Biotechnological
Production
Processes

7 2 18.00 R PP 36

D7.4
Comparative
Analysis of
Producer Strains

7 10 16.00 R PP 36

D7.5

Target
Identification
for Process
Optimisation

7 11 12.00 R PP 36
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Delive-
rable
Number
61

Deliverable Title
WP
number
53

Lead benefi-
ciary number

Estimated
indicative
person-
months

Nature 62

Dissemi-
nation level
63

Delivery date
64

D8.1 Project Website 8 1 2.00 R PU 6

D8.2

Software
Development/
Testing
Architecture

8 9 6.00 R PU 18

D8.3 Integrate
Software Suite 8 9 9.00 R PP 36

D8.4
Talks/Demo
Stalls at
Meetings

8 9 3.00 R PU 36

D8.5
Manuscripts
on Software
Suite/Tools

8 9 3.00 R PU 36

D8.6
Internal
Workshop at the
CRG

8 1 1.00 R PP 18

D8.7
External
Workshop at the
EBI/EMBL

8 1 1.00 R PU 36

D8.8 COPASI
workshop 8 1 1.00 R PP 36

D8.9

Researcher
Exchange
Visits Between
Partners

8 1 2.00 R PP 36

D9.1 Consortium
Agreement 9 1 1.00 O PP 6

D9.2 Quality
Assurance Plan 9 1 1.00 O PP 6

D9.3 Kick-off meeting 9 1 1.00 O PP 6

D9.4
1st short
scientific
6-months report

9 1 0.50 R PP 6

D9.5 1st Annual
Meeting 9 1 1.00 O PP 12

D9.6
2nd Short
scientific
6-months report

9 1 0.50 R PP 12

D9.7

1st Periodic
Activity and
Management
Report

9 1 1.00 R PP 18

D9.8 Mid-term review 9 1 0.50 R PP 18
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Delive-
rable
Number
61

Deliverable Title
WP
number
53

Lead benefi-
ciary number

Estimated
indicative
person-
months

Nature 62

Dissemi-
nation level
63

Delivery date
64

D9.9 2nd Annual
Meeting 9 1 1.00 O PP 24

D9.10
3rd Short
scientific
6-months report

9 1 0.50 R PP 24

D9.11
4th Short
scientific
6-months report

9 1 0.50 R PP 30

D9.12 Final Meeting 9 1 0.50 O PP 36

D9.13
Final Activity &
Management
Reports

9 1 1.00 R PP 36

Total 437.80
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One form per Work Package

Work package number 53 WP1 Type of activity 54 RTD

Work package title Database Integration & Exploitation

Start month 1

End month 18

Lead beneficiary number 55 6

Objectives

To develop new software tools and workflows for semi-automated integration and exploitation of diverse
genomics, network and expression databases for model building.

Description of work and role of partners

Task 1.1: Development of a database (NetBase) compliant with data standards (MIAME, MIAPE etc.) to store
experimental data/meta-data and literature-derived knowledge in a standardised “computationally-ready” format
to be easily used by visualisation and modelling tools developed in the course of the project. The database will
cover multiple organisms, including human, mouse, Drosophila, yeast and E. coli. Task Leader: FTELE.IGM.
FTELE.IGM will develop and provide database infrastructure. EMBL will provide relevant datasets hosted at the
EBI to populate the database.
Task 1.2: To connect the database infrastructure with the other tools used and developed in the consortium,
in particular, DataRail (to process and visualise data), CellNOpt (for logical modelling; we will use networks
generated from NetBase as prior knowledge), and the modelling/optimisation tools to be developed in WP3 of
this project. Task leader: EMBL. FTELE.IGM will develop programming interfaces on the database side, EMBL
will adapt DataRail/CellNOpt for use with Netbase.
Task 1.3: To integrate disparate data sources (such as ChIP-seq and microarray gene expression data) through
probabilistic models. Task leader: USheff, who will create the required statistical models.
Task 1.4: To develop standards and tools for integration and comparison of spatial gene expression data within
and between species. Task leader: UvA. CRG and UvA will provide spatial expression data and co-ordinate
standardization/development efforts.
Task 1.5: To integrate the tools developed in Tasks 1–3 into a common software framework, suitable for
biotechnological applications. Task leader: CSM, who will be in charge of code integration into a common
software suite.
Task 1.6: To integrate data from metabolomics experiments and flux balance analysis from E. coli. Task leader:
UNIMAN, who will provide, process and adapt the relevant data.

Person-Months per Participant
 

Participant number 10 Participant short name 11 Person-months per participant

1 CRG 3.00

3 EMBL 12.00

4 UvA 3.00

6 FTELE.IGM 12.00

7 UNIMAN 6.00

8 USFD 3.00
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Person-Months per Participant
 

Participant number 10 Participant short name 11 Person-months per participant

9 CSM 2.00

Total 41.00

List of deliverables
 

Delive-
rable
Number
61

Deliverable Title

Lead
benefi-
ciary
number

Estimated
indicative
person-
months

Nature 62

Dissemi-
nation
level 63

Delivery date 64

D1.1 Database Infrastructure 6 6.00 R PU 18

D1.2 Database/Tools Interface 3 6.00 R PU 18

D1.3 Integration Workflows 9 10.00 R PU 18

D1.4 Data Integration Tools 9 10.00 R PU 18

D1.5 Model Data File Editor 9 9.00 R PU 18

Total 41.00

Description of deliverables

D1.1) Database Infrastructure: A relational database infrastructure named NetBase to be developed at
FTELE.IGM for the purpose of integrating interaction and expression data from diverse data sources. [month 18]

D1.2) Database/Tools Interface: Interfaces with NetBase and CellNOpt to transfer prior knowledge networks.
[month 18]

D1.3) Integration Workflows: Adaptable workflows for modellers to put together datasets for model building and
fitting in a flexible and user-friendly way, implemented in a unified software framework. [month 18]

D1.4) Data Integration Tools: Command-line and graphical software tools to create and manage database
integration workflows [month 18]

D1.5) Model Data File Editor: An editor, which allows the user to create data files for modelling and enables
automated consistency and completeness checks. [month 18]

Schedule of relevant Milestones
 

Milestone
number 59 Milestone name

Lead
benefi-
ciary
number

Delivery
date from
Annex I 60

Comments

MS2 Database Infrastructure, Query &
Visualization Tools 6 18
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One form per Work Package

Work package number 53 WP2 Type of activity 54 RTD

Work package title Visualisation Tools for Data & Model Building

Start month 1

End month 18

Lead beneficiary number 55 8

Objectives

To develop new visualisation methods and tools to aid modellers in identifying relevant features, clusters and
trends in the data, to identify relevant systems components, and to analyse highly complex non-linear network
models.

Description of work and role of partners

Task 2.1 We will use probabilistic, dynamical, latent variable models, for jointly visualizing disparate
high-dimensional data sources. In particular these will be based on Gaussian process models (GPLVM) for data
visualization originally introduced by Lawrence (USFD). Task leader: USFD, who will create the GPLVM and
visualisation tools.
Task 2.2: Extension of DataRail visualisation routines for multi-dimensional data to be applied to the type of
data used in the consortium, and integration with GPLVM and other tools. Task leader: EMBL. EMBL and CSM,
in collaboration with the Sorger Lab at Harvard, will adapt tools from DataRail to enable integration of novel
methods. USFD will provide expertise on GPLVM.
Task 2.3: We will develop tools (based on existing code, implemented in Java and Python) to systematically
analyze and compare spatial gene expression patterns. Task leader: UvA. UvA and CRG will provide
visualization tools and perform the analyses. If deemed useful/feasible, CSM will integrate these tools into their
software suite.

Person-Months per Participant
 

Participant number 10 Participant short name 11 Person-months per participant

1 CRG 3.00

3 EMBL 3.00

4 UvA 3.00

8 USFD 8.20

9 CSM 3.00

Total 20.20

List of deliverables
 

Delive-
rable
Number
61

Deliverable Title

Lead
benefi-
ciary
number

Estimated
indicative
person-
months

Nature 62

Dissemi-
nation
level 63

Delivery date 64

D2.1 GPLVM Software 8 6.00 R PU 18
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List of deliverables
 

Delive-
rable
Number
61

Deliverable Title

Lead
benefi-
ciary
number

Estimated
indicative
person-
months

Nature 62

Dissemi-
nation
level 63

Delivery date 64

D2.2 DataRail Visualisation Tools 3 8.00 R PU 18

D2.3 Spatial Visualisation Tools 4 6.20 R PU 18

Total 20.20

Description of deliverables

D2.1) GPLVM Software: Software implementation of GPLVM with extended capability for visualisation of
high-dimensional, heteroscedastic data with time-series structure [month 18]

D2.2) DataRail Visualisation Tools: Interface for DataRail and other tools developed in the consortium (in
particular, GPLVM). Extended DataRail routines for visualisation [month 18]

D2.3) Spatial Visualisation Tools: Visualisation and comparison tools for spatial gene expression patterns [month
18]

Schedule of relevant Milestones
 

Milestone
number 59 Milestone name

Lead
benefi-
ciary
number

Delivery
date from
Annex I 60

Comments

MS2 Database Infrastructure, Query &
Visualization Tools 6 18
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One form per Work Package

Work package number 53 WP3 Type of activity 54 RTD

Work package title Integrated Software Tools for the Modelling Cycle

Start month 1

End month 36

Lead beneficiary number 55 2

Objectives

To develop novel methods to support the model building cycle, and to integrate them into a unified, powerful and
easy-to-use software framework, which can be applied to a wide range of modelling activities and processes.
WP3 forms one large, indivisible unit at the core of our project by specifically pooling the expertise of the
academic partners to produce an integrated suite of methods and software tools for model identification,
optimization, and analysis, as well as for optimal experimental design. The synergistic and complementary
expertise that we accumulate within our consortium will ensure that algorithm development will be up to the most
stringent quality standards possible, and will enable novel combinations and algorithmic developments.

Description of work and role of partners

Task 3.1: We will implement Bayesian approaches to model building for tractable models based on differential
equations and Gaussian processes, as well as for less tractable models based on non-linear differential
equations and probabilistic modelling where Markov Chain Monte Carlo methods are required for parameter
inference. Task leader: USFD. USFD, in collaboration with FTELE.IGM who will provide additional technical
expertise, will develop the methods and implement the models required for this task.
Task 3.2: We will develop new parameter estimation strategies, based on stochastic global optimisation
algorithms. These will be paired with fast local search algorithms to yield powerful hybrid search strategies. Task
leader: CSIC. CSIC, UvA, CWI, CRG and UNIMAN will combine their expertise to develop new, and improve
their existing optimisation algorithms.
Task 3.3: We will implement parallel meta-heuristics, which automatically favour specific optimisation strategies
developed in T3.2 according to the measured current efficiency of each algorithm. These techniques will be
implemented in software toolboxes which allow the user to choose among a wide range of powerful global
search methods, taking advantage of parallel high-performance computers (including GPU-based architectures),
as well as distributed/cloud computing on variable architectures. Task leader: CSIC. CSIC will develop the
cloud-/parallel-computing code framework required for combining optimization algorithms developed by CSIC, as
well as those provided by CRG, UvA, CWI and UNIMAN.
Task 3.4: We will develop efficient algorithms for parameter estimation via multi-objective optimisation (for
example, maximising both goodness of fit and robustness of the resulting network models). Task leader: UvA.
UvA will co-ordinate integration of multi-objective methods into existing search strategies provided by CSIC,
CRG, CWI and UNIMAN.
Task 3.5: Development of novel methods, protocols and software tools for model building, with a special focus
on multi-scale modelling, model selection and discrimination, parameter identifiability analysis (both theoretical
and practical), model validation and uncertainty quantification. Taks leader: CWI. CWI, CSIC, CRG, UvA and
UNIMAN will contribute and integrate novel as well as existing algorithms for these tasks to the integrated
software framework to be developed by CSM. INSIL will contribute additional algorithms, and also integrate
these algorithms into their own software framework.
Task 3.6: Integration of the above methods with the CellNOpt platform for large-scale logic modelling. Task
leader: EMBL, who will adapt CellNOpt for use with the integrated suite to be developed by CSM within this
project.
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Person-Months per Participant
 

Participant number 10 Participant short name 11 Person-months per participant

1 CRG 18.00

2 CSIC 30.00

3 EMBL 3.00

4 UvA 15.00

5 CWI 30.00

6 FTELE.IGM 12.00

7 UNIMAN 6.00

8 USFD 17.00

9 CSM 10.00

Total 141.00

List of deliverables
 

Delive-
rable
Number
61

Deliverable Title

Lead
benefi-
ciary
number

Estimated
indicative
person-
months

Nature 62

Dissemi-
nation
level 63

Delivery date 64

D3.1 Bayesian Inference Tools 8 27.00 R PU 24

D3.2 Parameter Estimation Tools 2 29.00 R PU 18

D3.3 Multi-objective Optimisation Tools 4 39.00 R PU 36

D3.4 Integrated Suite of Tools 9 46.00 R PU 36

Total 141.00

Description of deliverables

D3.1) Bayesian Inference Tools: New algorithms based on a Bayesian approaches to identify genome-wide
regulatory network topologies from heterogeneous information [month 24]

D3.2) Parameter Estimation Tools: New software tools for parameter estimation via global non-linear
optimisation (including co-operative parallel meta-heuristics making use of high performance computing facilities
(incl. GPU-based architectures) [month 18]

D3.3) Multi-objective Optimisation Tools: New software tools for multi-objective optimisation, implementing a
wide range of cost functions [month 36]

D3.4) Integrated Suite of Tools: Integrated software-suite for iterative multi-scale model building providing
tools for all the steps in the modelling cycle; documentation describing the suite, incl. algorithm comparison &
applications [month 36]
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Schedule of relevant Milestones
 

Milestone
number 59 Milestone name

Lead
benefi-
ciary
number

Delivery
date from
Annex I 60

Comments

MS4 Finished Software Package for the
Systems-Biology Modelling Cycle 9 36
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Project Number 1 289434 Project Acronym 2 BioPreDyn

One form per Work Package

Work package number 53 WP4 Type of activity 54 RTD

Work package title Application: Large-scale Models of Microorganisms

Start month 1

End month 36

Lead beneficiary number 55 7

Objectives

To apply the methods and software tools developed in WP1–3 for reconstructing and verifying large-scale
models of metabolism and gene regulation.

Description of work and role of partners

Task 4.1: Adopt and improve existing whole-genome metabolic reconstructions of E. coli and S. cervisiae
in terms of annotation standards for further use in dynamic modelling. Task leader: UNIMAN. UNIMAN, in
collaboration with FS and INSIL, will curate datasets and process them into the required data formats. FS and
INSIL will provide additional data.
Task 4.2: Develop approximate kinetic models based on the E. coli and S. cervisae reconstructions using
generic kinetic rate laws (lin-log, convenience kinetics or others). Task leader: CSIC. CSIC and UNIMAN will
collaborate with INSIL and FS to create such models, which will be based on existing models contributed by
UNIMAN and INSIL, or will be fitted to data created in the context of T4.1.
Task 4.3: Reverse-engineering of gene regulatory network of E. coli using publicly available transcriptomics data
(microarrays, next-gen sequencing, etc.). Task leader: FTELE.IGM, who will collaborate with CWI, to perform
model fitting and validation.
Task 4.4: Connection of gene regulatory network with metabolic network to create a multi-scale model of E. coli.
Task leader: UNIMAN. UNIMAN will co-ordinate efforts with FTELE.IGM to integrate results from T4.2 and T4.3.
Task 4.5: Adopt the large-scale Chinese Hamster Ovary (CHO) cell metabolism reconstruction contributed by
INSIL and update it according to established annotation standards. Task leader: INSIL, who will provide their
own reconstruction and integrate it with publicly available data to be collected/integrated by UNIMAN.
Task 4.6: Develop kinetic models for CHO cell metabolism based on the reconstruction and data existing at
INSIL, and using generic kinetic rate laws and parameter estimation. Task leader: CSIC. CSIC will use methods
developed in WP3 to obtain such models by fitting to the dataset provided by INSIL and UNIMAN (see T4.5).

Person-Months per Participant
 

Participant number 10 Participant short name 11 Person-months per participant

2 CSIC 3.00

5 CWI 1.00

6 FTELE.IGM 4.00

7 UNIMAN 23.00

10 INSIL 10.00

11 FS 6.00

Total 47.00
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List of deliverables
 

Delive-
rable
Number
61

Deliverable Title

Lead
benefi-
ciary
number

Estimated
indicative
person-
months

Nature 62

Dissemi-
nation
level 63

Delivery date 64

D4.1 Reconstruction of E. coli metabolism 7 6.00 R PU 18

D4.2 Genome-wide Kinetic Model of S.
cervisiae 2 6.00 R PU 18

D4.3 Reconstruction of CHO Cell
Metabolism 6 6.00 R PU 18

D4.4 Genome-wide Kinetic Model of E. coli 7 8.00 R PU 18

D4.5 Gene Regulatory Network of E. coli 7 9.00 R PU 36

D4.6 Combined Metabolic/Regulatory
Model of E. coli 10 12.00 R PU 36

Total 47.00

Description of deliverables

D4.1) Reconstruction of E. coli metabolism: Standardized network reconstruction of E. coli metabolism
expressed in SBML [month 18]

D4.2) Genome-wide Kinetic Model of S. cervisiae: Genome-scale kinetic metabolic model of S. cerevisiae (for
WP7) [month 18]

D4.3) Reconstruction of CHO Cell Metabolism: Standardized network reconstruction of CHO cell metabolism in
SBML [month 18]

D4.4) Genome-wide Kinetic Model of E. coli: Genome-scale kinetic metabolic model of E. coli expressed in
SBML [month 18]

D4.5) Gene Regulatory Network of E. coli: Gene regulatory network of E. coli expressed in SBML [month 36]

D4.6) Combined Metabolic/Regulatory Model of E. coli: Combined metabolic and genetic regulation model of E.
coli [month 36]

Schedule of relevant Milestones
 

Milestone
number 59 Milestone name

Lead
benefi-
ciary
number

Delivery
date from
Annex I 60

Comments

MS3 Whole-cell Models Required for
Biotechnological Applications 10 36

MS5 Proof-of-Principle Models Developed Using
our Software 10 36
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Project Number 1 289434 Project Acronym 2 BioPreDyn

One form per Work Package

Work package number 53 WP5 Type of activity 54 RTD

Work package title Application: Signalling & Regulatory Networks in Cells

Start month 13

End month 36

Lead beneficiary number 55 3

Objectives

To apply the methods and software tools developed in WP1–3 to models of signalling and regulatory networks in
cell lines, and then link these models to the metabolic models of CHO cells developed in WP4.

Description of work and role of partners

Task 5.1: Reconstruction of networks of signal transduction and gene regulation of relevance in biotechnological
production processes, based on methods and data resources from WP1–3. Task leader: EMBL. EMBL will lead
the effort to fit and identify models, in collaboration with FTELE.IGM and USheff.
Task 5.2: Calibration of network models using methods implementing the modelling cycle as described in WP3.
Task leader: EMBL. EMBL, CSIC, CWI, FTELE.IGM and USheff will use their tools and methods developed as
part of WP3 to implement this task.
Task 5.3: Analysis of models to gain mechanistic and predictive insights into optimisation of biotechnological
production processes. Task leader: FTELE.IGM, who will collaborate with EMBL, to use their joint expertise in
analysis of such models.
Task 5.4: To link these models to models of metabolism in CHO cells developed in WP4. Task leader: INSIL.
INSIL will link their models of CHO cells to signaling models developed in WP5 under the leadership of EMBL
(with contributions from other partners, especially FTELE.IGM).

Person-Months per Participant
 

Participant number 10 Participant short name 11 Person-months per participant

2 CSIC 2.00

3 EMBL 18.00

5 CWI 2.00

6 FTELE.IGM 8.00

8 USFD 9.00

10 INSIL 6.00

Total 45.00
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List of deliverables
 

Delive-
rable
Number
61

Deliverable Title

Lead
benefi-
ciary
number

Estimated
indicative
person-
months

Nature 62

Dissemi-
nation
level 63

Delivery date 64

D5.1 Algorithms for Integration of
Signalling Data 3 9.00 R PU 18

D5.2 Reconstruction of CHO Signalling
Networks 10 12.00 R PU 36

D5.3 Kinetic Models of CHO Signalling
Networks 10 12.00 R PU 36

D5.4 Integrated Signalling/Metabolic
Models (CHO) 10 12.00 R PU 36

Total 45.00

Description of deliverables

D5.1) Algorithms for Integration of Signalling Data: Algorithms that allow the integration of protein and gene
expression measurements to obtain a hypothesized set of interactions for relevant signalling cascades [month
18]

D5.2) Reconstruction of CHO Signalling Networks: A reconstruction of signalling and regulatory networks of
relevance the production of nutraceuticals and other components in CHO cells in SBML format [month 36]

D5.3) Kinetic Models of CHO Signalling Networks: Kinetic models of signalling and regulatory networks in CHO
cells [month 36]

D5.4) Integrated Signalling/Metabolic Models (CHO): Integrated models of signalling, regulatory, and metabolic
networks in CHO cells [month 36]

Schedule of relevant Milestones
 

Milestone
number 59 Milestone name

Lead
benefi-
ciary
number

Delivery
date from
Annex I 60

Comments

MS5 Proof-of-Principle Models Developed Using
our Software 10 36
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Project Number 1 289434 Project Acronym 2 BioPreDyn

One form per Work Package

Work package number 53 WP6 Type of activity 54 RTD

Work package title Application: Developmental Gene Regulatory Networks in Animals

Start month 13

End month 36

Lead beneficiary number 55 4

Objectives

To apply the methods and software tools developed in WP1–3 to complex spatial models of gene regulatory
networks involved in animal development.

Description of work and role of partners

Task 6.1: Data integration/visualisation tools from WP1 & 2 will be used to quantitatively compare spatial gene
expression data from different databases within species (e.g. mRNA vs protein data), and between species
(e.g. different species of dipterans). Task leader: UvA. Both UvA and CRG will provide data, and collaborate in
developing the tools required for quantitative comparisons.
Task 6.2: The datafile editor from WP1 will be used to create extended datasets for modelling spatial gene
regulation in cnidarians (Nematostella) & Drosophila. Task leader: UvA, who will create a novel gene expression
dataset for cnidarians. CRG will process their existing Drosophila datasets for use with the tools developed by
this consortium.
Task 6.3: The modelling cycle will be employed (using tools developed in WP3) to create new and improved
models of developmental gene networks underlying pattern formation during the early development of
Nematostella and various dipteran insects. Our software framework will allow a systematic comparison of
optimisation algorithms and modelling frameworks for this problem, which is representative for many other
complex spatial modelling applications in general. Task leader: CRG. UvA, CRG, CWI and USheff will all use
their modeling tools and algorithms (see WP3) to obtain such models.
Task 6.4: These models will be analysed to gain new biological insights into the pattern forming processes
underlying animal form, and their evolution. Task leader: CRG. CRG and UvA will combine their previous
experience in analysis of such complex spatial models to achieve this task.

Person-Months per Participant
 

Participant number 10 Participant short name 11 Person-months per participant

1 CRG 24.00

4 UvA 18.60

5 CWI 2.00

8 USFD 6.00

Total 50.60
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List of deliverables
 

Delive-
rable
Number
61

Deliverable Title

Lead
benefi-
ciary
number

Estimated
indicative
person-
months

Nature 62

Dissemi-
nation
level 63

Delivery date 64

D6.1 Datasets for Spatial Gene Expression 4 18.00 R PU 18

D6.2 Animal Regulatory Network Models 4 32.60 R PU 36

Total 50.60

Description of deliverables

D6.1) Datasets for Spatial Gene Expression: Improved/standardised datasets of spatial gene expression during
animal development [month 18]

D6.2) Animal Regulatory Network Models: Improved models of gene regulatory networks underlying pattern
formation in animal development; datasets, models and biological analyses to be described in a number of
separate manuscripts [month 36]

Schedule of relevant Milestones
 

Milestone
number 59 Milestone name

Lead
benefi-
ciary
number

Delivery
date from
Annex I 60

Comments

MS5 Proof-of-Principle Models Developed Using
our Software 10 36
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Project Number 1 289434 Project Acronym 2 BioPreDyn

One form per Work Package

Work package number 53 WP7 Type of activity 54 RTD

Work package title Application: Biotechnological Production Processes

Start month 1

End month 36

Lead beneficiary number 55 11

Objectives

To apply the methods and software tools developed in WP1–3 to production processes in industrial
biotechnology, with a strong focus on validating code and software for the application of fungal, bacterial
and mammalian models (including dynamic models of S.cerevisiae, E.coli and CHO cell cultures). Areas of
application are the optimization of industrial processes focusing on the production of nutraceutical ingredients,
biopharmaceuticals, and fine chemicals.

Description of work and role of partners

Task 7.1: We will provide recommendations for software design suitable for use in a commercial biotechnology
setting (functionality and GUI). Task leader: FS. FS and INSIL will collaborate with academic partners CWI and
UNIMAN (the latter of which has extensive expertise in software design) to provide suitable recommendations to
CSM.
Task 7.2: We will test tools/algorithms developed in WP1–3 and models developed in WP4. Scientists with
different levels of modelling experiences (molecular biologist, engineer, bioinformatician) will be employed as
testers. Feedback for the improvement of the software will be provided to CSM and the academic partners. Task
leader: FS. Additional testing and feedback will be provided by INSIL.
Task 7.3: We will develop simulations (through iterative application of the modelling cycle; based on models
from WP4) of the production of nutraceutical ingredients, pharmaceuticals, and fine chemicals. This will include
integration of published data on transcription and metabolism, as well as results obtained in WP4/5. Task leader:
CSIC who will provide the required technical expertise to engineers working for INSIL and FS to perform this
task.
Task 7.4: We will use the models developed in Task 7.3 to compare low-, medium- & high-producer strains.
Model results will be used to describe phenotypic data and to identify metabolic engineering targets, as well
as targets for process improvement. Task leader: INSIL. Both INSIl and FS will profit from the expertise of the
academic partners, and the software tools developed by CSM, to implement such models.

Person-Months per Participant
 

Participant number 10 Participant short name 11 Person-months per participant

2 CSIC 3.00

5 CWI 1.00

7 UNIMAN 1.00

10 INSIL 20.00

11 FS 30.00

Total 55.00
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List of deliverables
 

Delive-
rable
Number
61

Deliverable Title

Lead
benefi-
ciary
number

Estimated
indicative
person-
months

Nature 62

Dissemi-
nation
level 63

Delivery date 64

D7.1 Specifications for Software
Functionality & GUI 11 3.00 R PP 18

D7.2 Prototype Software for Testing 9 6.00 R PP 18

D7.3 Models: Biotechnological Production
Processes 2 18.00 R PP 36

D7.4 Comparative Analysis of Producer
Strains 10 16.00 R PP 36

D7.5 Target Identification for Process
Optimisation 11 12.00 R PP 36

Total 55.00

Description of deliverables

D7.1) Specifications for Software Functionality & GUI: Recommendations for software design (functionality and
GUI) [month 18]

D7.2) Prototype Software for Testing: User-friendly version of prototype software for testing in a setting for
industrial applications [month 18]

D7.3) Models: Biotechnological Production Processes: Models (based on WP4) for simulation of the production
of nutraceutical ingredients, pharmaceuticals, and fine chemicals in microorganisms and eukaryotic cell lines
[month 36]

D7.4) Comparative Analysis of Producer Strains: Comparative analysis of low-, medium-, high-producer strains
using software developed by partners (integration of data at flux, transcript and metabolite level) [month 36]

D7.5) Target Identification for Process Optimisation: Targets for metabolic engineering, synthetic biology and
process improvement for various production organisms including E.coli, S.cerevisiae and CHO cells [month 36]

Schedule of relevant Milestones
 

Milestone
number 59 Milestone name

Lead
benefi-
ciary
number

Delivery
date from
Annex I 60

Comments

MS1 Prototype Modelling Software for Testing 11 6

MS4 Finished Software Package for the
Systems-Biology Modelling Cycle 9 36

MS5 Proof-of-Principle Models Developed Using
our Software 10 36
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Project Number 1 289434 Project Acronym 2 BioPreDyn

One form per Work Package

Work package number 53 WP8 Type of activity 54 OTHER

Work package title Dissemination, Exploitation & Training

Start month 1

End month 36

Lead beneficiary number 55 9

Objectives

To disseminate project achievements, to implement a sustainable, permanent distribution and support base
of our software, to advertise this software at scientific meetings and professional trade shows, and to explore
commercialization of project results. All of the above will be done in accordance with the regulations of the CA
and will in particular be subject to the prior conclusion of written agreements with the respective institutes.
To provide multi-disciplinary training to post-doctoral research fellows and other researchers (such as PhD
students) in our groups and companies in the state-of-the-art methods of our fields, and to train researchers not
directly involved in our consortium in the methods and tools which are to be developed during this project, and
consequently in the effective interpretation and use of scientific data is another objective.

Description of work and role of partners

Task 8.1: We will disseminate main project achievements through the central project website, peer-review
publications and press releases to the media (CRG).
Task 8.2: We will set up a version-control server for source code (SVN), as well as automatic building and
testing processes (CMake.org) with web-based reporting (CDash.org). These efforts will be co-ordinated by
partner 9 (CSM), who will offer their existing code development infrastructure to the project, and will provide
training in its use for the other partners (see WP9).
Task 8.3: We will create a unified and consistent cross-platform code infrastructure (integrating efficient, native
numerical code in C/C++ with graphical user interfaces based on the Tulip widget library) that includes all the
methods and tools implemented and developed during this project, which enables the easy establishment of
flexible, automated workflows, and guarantees interoperability and comparison of methods and tools (CSM).
Task 8.4: We will present our software at selected scientific meetings, and relevant professional trade shows
(for example, the Annual International Conference on Intelligent Systems for Molecular Biology (ISMB); the
International Conference on Systems Biology (ICSB); the RECOMB Conference with its DREAM Initiative
for optimisation algorithms; the European Conference on Computational Biology (ECCB); the symposium on
Computer Applications in Biotechnology to be held in 2013; and the annual Bio-IT World Conference & Expo).
This will be done by means of oral presentations and posters, as well as stalls, where potential users can
interactively explore our software, and where they will be provided with professional advice, instructional material
and documentation (CSM, CRG).
Task 8.5: Two week-long workshops will be organised, at the CRG and at the EBI/EMBL, early and late in the
project. The early workshop will aim at teaching post-doctoral fellows and other researchers involved in our
consortium how to understand and apply state-of-the-art methods and tools involved in database integration,
visualisation and model building (taught/organized jointly by all academic partners; CSM will provide training
for their code development and modelling frameworks). In addition, this first workshop will include a session
on intellectual property, technology transfer, and entrepreneurship (organized by the Innovation Board; see
section 2.1). The second workshop, towards the end of the project, will aim at teaching outside researchers the
theoretical and practical aspects of the methods and tools developed during this project (teaching co-ordinated
by CSM; involving all academic partners in the network). An additional workshop on modeling and simulation
using COPASI will be organized by Pedro MendesThe format is usually a 3-day long workshop and has good
attendance. EBI is leading several training activities on modeling, BioPreDyn will provide support to such
initiatives (in terms of “sponsor” and “trainees”). We envision one to two hands-on workshops in the course of the
project.
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Task 8.6: In addition, we plan to encourage PhD students and post-doctoral researchers involved in our
consortium to swap laboratories during the execution of their projects. The idea is to have researchers spend
one or two years in one lab, before moving on to another partner of the consortium. In this way, we ensure that
young researchers are exposed to many different, but related fields of expertise, such that they can combine the
skills they learn in new and productive ways in the future.
Task 8.7: We also want to foster exchanges of expertise and know-how between the academic and private
groups through short or medium-term secondments of the fellows involved in the project.

Person-Months per Participant
 

Participant number 10 Participant short name 11 Person-months per participant

1 CRG 8.00

9 CSM 21.00

Total 29.00

List of deliverables
 

Delive-
rable
Number
61

Deliverable Title

Lead
benefi-
ciary
number

Estimated
indicative
person-
months

Nature 62

Dissemi-
nation
level 63

Delivery date 64

D8.1 Project Website 1 2.00 R PU 6

D8.2 Software Development/Testing
Architecture 9 6.00 R PU 18

D8.3 Integrate Software Suite 9 9.00 R PP 36

D8.4 Talks/Demo Stalls at Meetings 9 3.00 R PU 36

D8.5 Manuscripts on Software Suite/Tools 9 3.00 R PU 36

D8.6 Internal Workshop at the CRG 1 1.00 R PP 18

D8.7 External Workshop at the EBI/EMBL 1 1.00 R PU 36

D8.8 COPASI workshop 1 1.00 R PP 36

D8.9 Researcher Exchange Visits Between
Partners 1 2.00 R PP 36

Total 28.00

Description of deliverables

D8.1) Project Website: Project website for the scientific community and the general public [month 6]

D8.2) Software Development/Testing Architecture: Software development and testing architecture
(version-control server for code, automated building/testing processes with web-based reporting; hosted by
CSM) [month 18]

D8.3) Integrate Software Suite: Integrated software suite implementing the methods and tools developed during
this project in an interoperable, user-friendly and well-supported way [month 36]

D8.4) Talks/Demo Stalls at Meetings: Oral/presentations/stalls at selected scientific conferences and relevant
professional trade shows [month 36]

D8.5) Manuscripts on Software Suite/Tools: Peer-reviewed publications in high-profile journal describing our
software tools, accompanied by press releases to the media wherever possible/appropriate [month 36]
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D8.6) Internal Workshop at the CRG: Project-internal workshop at the CRG to train researchers within our
consortium in state-of-the-art methods and tools in our respective fields of expertise [month 18]

D8.7) External Workshop at the EBI/EMBL: Publicly advertised workshop at the EBI/EMBL to train researchers
in the general field of optimisation and modelling how to understand and apply the methods and software tools
developed during this project [month 36]

D8.8) COPASI workshop: 3-day long workshop workshop on modeling and simulation using COPASI [month 36]

D8.9) Researcher Exchange Visits Between Partners: Exchange visits and secondments between the academic
and private participants [month 36]

Schedule of relevant Milestones
 

Milestone
number 59 Milestone name

Lead
benefi-
ciary
number

Delivery
date from
Annex I 60

Comments

MS1 Prototype Modelling Software for Testing 11 6

MS4 Finished Software Package for the
Systems-Biology Modelling Cycle 9 36
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Project Number 1 289434 Project Acronym 2 BioPreDyn

One form per Work Package

Work package number 53 WP9 Type of activity 54 MGT

Work package title Project Management

Start month 1

End month 36

Lead beneficiary number 55 1

Objectives

To efficiently manage the project to ensure successful completion of the scientific and technological objectives
within the planned time frame and budget and at high quality standards.

Description of work and role of partners

Task 9.1: Consortium Management: This task covers the day-to-day management of the project, including the
organisation of project meetings and events, the provision of a decision-making structure, conflict resolution and
risk management.
Task 9.2: Quality Assurance: A Quality Assurance Plan will be defined to ensure consistency across the WPs
and to guarantee that all deliverables have a high quality.
Task 9.3: Communication: We will ensure effective communication within the consortium and between the
project and the EC by providing and implementing pertinent tools and mechanisms (website, mailing lists, phone
conferences, reports, newsletters, etc).
Task 9.4: Financial and Legal Management: This task covers the management of EC payments to the partners,
overview of budget expenditure, grant amendments, support to the partners in all financial and legal aspects
to make sure that the requirements of the grant agreement are understood and fulfilled by the consortium
members.
Task 9.5: Reporting: This task consists in gathering reports and deliverables from the WP leaders, and
submitting them on behalf of the consortium to the EC.
Task 9.6: Monitoring ethics and gender issues: This task includes the monitoring and reviewing of any ethical
issues identified in the proposal, as well as defining, implementing and monitoring actions to promote the
participation of women in the project.

Person-Months per Participant
 

Participant number 10 Participant short name 11 Person-months per participant

1 CRG 10.00

Total 10.00

List of deliverables
 

Delive-
rable
Number
61

Deliverable Title

Lead
benefi-
ciary
number

Estimated
indicative
person-
months

Nature 62

Dissemi-
nation
level 63

Delivery date 64

D9.1 Consortium Agreement 1 1.00 O PP 6

D9.2 Quality Assurance Plan 1 1.00 O PP 6

D9.3 Kick-off meeting 1 1.00 O PP 6



WT3:
Work package description

289434 BioPreDyn - Workplan table - 2011-07-29 12:05 -  Page 25 of 30

List of deliverables
 

Delive-
rable
Number
61

Deliverable Title

Lead
benefi-
ciary
number

Estimated
indicative
person-
months

Nature 62

Dissemi-
nation
level 63

Delivery date 64

D9.4 1st short scientific 6-months report 1 0.50 R PP 6

D9.5 1st Annual Meeting 1 1.00 O PP 12

D9.6 2nd Short scientific 6-months report 1 0.50 R PP 12

D9.7 1st Periodic Activity and Management
Report 1 1.00 R PP 18

D9.8 Mid-term review 1 0.50 R PP 18

D9.9 2nd Annual Meeting 1 1.00 O PP 24

D9.10 3rd Short scientific 6-months report 1 0.50 R PP 24

D9.11 4th Short scientific 6-months report 1 0.50 R PP 30

D9.12 Final Meeting 1 0.50 O PP 36

D9.13 Final Activity & Management Reports 1 1.00 R PP 36

Total 10.00

Description of deliverables

D9.1) Consortium Agreement: Signature of Consortium Agreement [month 6]

D9.2) Quality Assurance Plan: Establishment of Quality Assurance Plan [month 6]

D9.3) Kick-off meeting: Kick-off meeting [month 6]

D9.4) 1st short scientific 6-months report: 1st short scientific 6-months report [month 6]

D9.5) 1st Annual Meeting: 1st Annual Meeting [month 12]

D9.6) 2nd Short scientific 6-months report: 2nd Short scientific 6-months report [month 12]

D9.7) 1st Periodic Activity and Management Report: 1st Periodic Activity and Management Report [month 18]

D9.8) Mid-term review: Mid-term review [month 18]

D9.9) 2nd Annual Meeting: 2nd Annual Meeting [month 24]

D9.10) 3rd Short scientific 6-months report: 3rd Short scientific 6-months report [month 24]

D9.11) 4th Short scientific 6-months report: 4th Short scientific 6-months report [month 30]

D9.12) Final Meeting: Final Meeting [month 36]

D9.13) Final Activity & Management Reports: Final Activity & Management Reports [month 36]

Schedule of relevant Milestones
 

Milestone
number 59 Milestone name

Lead
benefi-
ciary
number

Delivery
date from
Annex I 60

Comments



WT4:
List of Milestones

289434 BioPreDyn - Workplan table - 2011-07-29 12:05 -  Page 26 of 30

Project Number 1 289434 Project Acronym 2 BioPreDyn

List and Schedule of Milestones

Milestone
number 59 Milestone name WP number 53 Lead benefi-

ciary number
Delivery date
from Annex I 60 Comments

MS1 Prototype Modelling
Software for Testing WP7, WP8 11 6

MS2
Database
Infrastructure, Query
& Visualization Tools

WP1, WP2 6 18

MS3

Whole-cell Models
Required for
Biotechnological
Applications

WP4 10 36

MS4

Finished Software
Package for the
Systems-Biology
Modelling Cycle

WP3, WP7,
WP8 9 36

MS5
Proof-of-Principle
Models Developed
Using our Software

WP4, WP5,
WP6, WP7,
WP7

10 36
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Project Number 1 289434 Project Acronym 2 BioPreDyn

Tentative schedule of Project Reviews

Review
number 65

Tentative
timing

Planned venue
of review Comments, if any

RV 1 18 Barcelona
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Project Number 1 289434 Project Acronym 2 BioPreDyn

Indicative efforts (man-months) per Beneficiary per Work Package

Beneficiary number and
short-name WP 1 WP 2 WP 3 WP 4 WP 5 WP 6 WP 7 WP 8 WP 9 Total per Beneficiary

1 - CRG 3.00 3.00 18.00 0.00 0.00 24.00 0.00 8.00 10.00 66.00

2 - CSIC 0.00 0.00 30.00 3.00 2.00 0.00 3.00 0.00 0.00 38.00

3 - EMBL 12.00 3.00 3.00 0.00 18.00 0.00 0.00 0.00 0.00 36.00

4 - UvA 3.00 3.00 15.00 0.00 0.00 18.60 0.00 0.00 0.00 39.60

5 - CWI 0.00 0.00 30.00 1.00 2.00 2.00 1.00 0.00 0.00 36.00

6 - FTELE.IGM 12.00 0.00 12.00 4.00 8.00 0.00 0.00 0.00 0.00 36.00

7 - UNIMAN 6.00 0.00 6.00 23.00 0.00 0.00 1.00 0.00 0.00 36.00

8 - USFD 3.00 8.20 17.00 0.00 9.00 6.00 0.00 0.00 0.00 43.20

9 - CSM 2.00 3.00 10.00 0.00 0.00 0.00 0.00 21.00 0.00 36.00

10 - INSIL 0.00 0.00 0.00 10.00 6.00 0.00 20.00 0.00 0.00 36.00

11 - FS 0.00 0.00 0.00 6.00 0.00 0.00 30.00 0.00 0.00 36.00

Total 41.00 20.20 141.00 47.00 45.00 50.60 55.00 29.00 10.00 438.80
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Indicative efforts per Activity Type per Beneficiary

Activity type Part. 1
CRG

Part. 2
CSIC

Part. 3
EMBL

Part. 4
UvA

Part. 5
CWI

Part. 6
FTELE.I

Part. 7
UNIMAN

Part. 8
USFD

Part. 9
CSM

Part. 10
INSIL

Part. 11
FS Total

1. RTD/Innovation activities

WP 1 3.00 0.00 12.00 3.00 0.00 12.00 6.00 3.00 2.00 0.00 0.00 41.00

WP 2 3.00 0.00 3.00 3.00 0.00 0.00 0.00 8.20 3.00 0.00 0.00 20.20

WP 3 18.00 30.00 3.00 15.00 30.00 12.00 6.00 17.00 10.00 0.00 0.00 141.00

WP 4 0.00 3.00 0.00 0.00 1.00 4.00 23.00 0.00 0.00 10.00 6.00 47.00

WP 5 0.00 2.00 18.00 0.00 2.00 8.00 0.00 9.00 0.00 6.00 0.00 45.00

WP 6 24.00 0.00 0.00 18.60 2.00 0.00 0.00 6.00 0.00 0.00 0.00 50.60

WP 7 0.00 3.00 0.00 0.00 1.00 0.00 1.00 0.00 0.00 20.00 30.00 55.00

Total Research 48.00 38.00 36.00 39.60 36.00 36.00 36.00 43.20 15.00 36.00 36.00 399.80

2. Demonstration activities

Total Demo 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

3. Consortium Management activities

WP 9 10.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 10.00

Total Management 10.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 10.00

4. Other activities

WP 8 8.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 21.00 0.00 0.00 29.00

Total other 8.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 21.00 0.00 0.00 29.00

Total 66.00 38.00 36.00 39.60 36.00 36.00 36.00 43.20 36.00 36.00 36.00 438.80
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Project efforts and costs

Estimated eligible costs (whole duration of the project)
Benefi-
ciary

number

Beneficiary
short name Effort (PM) Personnel

costs (€)
Subcontracting

(€)
Other Direct

costs (€)

Indirect costs
OR lump sum,

flat-rate or
scale-of-unit (€)

Total costs
Total

receipts (€)
Requested EU
contribution (€)

1 CRG 66.00 310,000.00 4,000.00 40,742.00 210,445.20 565,187.20 0.00 477,987.00

2 CSIC 38.00 143,635.00 0.00 17,500.00 265,725.00 426,860.00 0.00 320,145.00

3 EMBL 36.00 135,610.00 0.00 7,666.00 85,965.60 229,241.60 0.00 171,931.00

4 UvA 39.60 202,301.00 0.00 30,000.00 177,356.00 409,657.00 0.00 307,242.00

5 CWI 36.00 189,141.00 0.00 10,500.00 156,930.00 356,571.00 0.00 267,428.00

6 FTELE.IGM 36.00 90,000.00 0.00 6,000.00 57,600.00 153,600.00 0.00 115,200.00

7 UNIMAN 36.00 185,129.00 0.00 29,749.00 128,926.80 343,804.80 0.00 257,853.00

8 USFD 43.20 230,030.00 0.00 12,670.00 145,620.00 388,320.00 0.00 291,240.00

9 CSM 36.00 188,372.00 0.00 10,000.00 39,674.40 238,046.40 0.00 211,500.00

10 INSIL 36.00 180,000.00 0.00 36,000.00 129,600.00 345,600.00 0.00 259,200.00

11 FS 36.00 199,145.00 0.00 9,000.00 124,887.00 333,032.00 0.00 249,774.00

Total 438.80 2,053,363.00 4,000.00 209,827.00 1,522,730.00 3,789,920.00 0.00 2,929,500.00



1. Project number

The project number has been assigned by the Commission as the unique identifier for your project. It cannot be changed.
The project number should appear on each page of the grant agreement preparation documents (part A and part B) to
prevent errors during its handling.

2. Project acronym

Use the project acronym as given in the submitted proposal. It cannot be changed unless agreed so during the negotiations.
The same acronym should appear on each page of the grant agreement preparation documents (part A and part B) to
prevent errors during its handling.

53. Work Package number

Work package number: WP1, WP2, WP3, ..., WPn

54. Type of activity

For all FP7 projects each work package must relate to one (and only one) of the following possible types of activity (only if
applicable for the chosen funding scheme – must correspond to the GPF Form Ax.v):

• RTD/INNO = Research and technological development including scientific coordination - applicable for Collaborative Projects
and Networks of Excellence

• DEM = Demonstration - applicable for collaborative projects and Research for the Benefit of Specific Groups

• MGT = Management of the consortium - applicable for all funding schemes

• OTHER = Other specific activities, applicable for all funding schemes

• COORD = Coordination activities – applicable only for CAs

• SUPP = Support activities – applicable only for SAs

55. Lead beneficiary number

Number of the beneficiary leading the work in this work package.

56. Person-months per work package

The total number of person-months allocated to each work package.

57. Start month

Relative start date for the work in the specific work packages, month 1 marking the start date of the project, and all other start
dates being relative to this start date.

58. End month

Relative end date, month 1 marking the start date of the project, and all end dates being relative to this start date.

59. Milestone number

Milestone number:MS1, MS2, …, MSn

60. Delivery date for Milestone

Month in which the milestone will be achieved. Month 1 marking the start date of the project, and all delivery dates being
relative to this start date.

61. Deliverable number

Deliverable numbers in order of delivery dates: D1 – Dn

62. Nature

Please indicate the nature of the deliverable using one of the following codes

R = Report, P = Prototype, D = Demonstrator, O = Other

63. Dissemination level

Please indicate the dissemination level using one of the following codes:

• PU = Public

• PP = Restricted to other programme participants (including the Commission Services)

• RE = Restricted to a group specified by the consortium (including the Commission Services)

• CO = Confidential, only for members of the consortium (including the Commission Services)



• Restreint UE = Classified with the classification level "Restreint UE" according to Commission Decision 2001/844 and
amendments

• Confidentiel UE = Classified with the mention of the classification level "Confidentiel UE" according to Commission Decision
2001/844 and amendments

• Secret UE = Classified with the mention of the classification level "Secret UE" according to Commission Decision 2001/844
and amendments

64. Delivery date for Deliverable

Month in which the deliverables will be available. Month 1 marking the start date of the project, and all delivery dates being
relative to this start date

65. Review number

Review number: RV1, RV2, ..., RVn

66. Tentative timing of reviews

Month after which the review will take place. Month 1 marking the start date of the project, and all delivery dates being relative
to this start date.

67. Person-months per Deliverable

The total number of person-month allocated to each deliverable.
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B1. Concept and objectives, progress beyond state-of-the-art, S/T 
methodology and work plan  

 
 

B 1.1 Concept and Objectives 

Mathematical and computational models (used in conjunction with quantitative data) are central in 
bioinformatics and systems biology. Models provide new ways to exploit and interpret existing 
datasets, generate novel and testable hypotheses, and enable us to gain a mechanistic 
understanding of the function of complex biological systems. They also support a quantitative 
framework for interventions involved in the health and biotechnological sectors. A particularly 
interesting application is the design and optimisation of biotechnological production processes 
based on engineered microbial systems, cell lines, and (soon) synthetic biology. 

Since the amount and quality of experimental ―omics‖ data continues to increase rapidly, we are in 
great need of implementing integration and exploitation of the data, and developing 
methods for rigorous and systematic model building, validation, and analysis, which can 
handle this complexity. Such methods are currently being developed by multiple academic 
research groups, but their wider application—especially in an industrial biotechnology context—is 
seriously hampered by the lack of standardisation and powerful, easy-to-use, reliable software 
tools. This project aims at resolving this issue, by bringing together academic labs that manage 
large databases and develop cutting-edge model-building, analysis, and optimisation algorithms 
with small and medium enterprises (SMEs) that can implement these tools in a consistent, and 
well-supported software framework and apply them to biotechnological applications. Our planned 
collaboration between algorithm developers and biotechnology companies will facilitate the transfer 
of information and code from an academic setting to commercial application, and will thereby 
strengthen European competitiveness in the fields of systems/synthetic biology and biotechno-
logical production processes based on engineered biological systems. 

B 1.1.1 Modelling of Biological Systems 

Models are the central elements in hypothesis-driven research in systems biology. A model repre-
sents a computable set of assumptions and hypotheses—encoded explicitly and quantitatively by 
rules and equations—that need to be tested or supported experimentally (Kitano, 2002). 

Complex biological systems are usually represented by networks (also called graphs). A network 
is an abstraction of a complex system that is extremely useful—when used in the proper way—to 
understand and predict the system‘s behaviour. In a network, the system is divided into 
components; each component is abstracted as a single node, and edges between pairs of nodes 
represent (dynamic) interactions. 

An edge can either represent a direct physical interaction—the basis of mechanistic models (e.g. 
in gene regulatory networks, a transcription factor regulating its transcriptional target, or a kinase 
phosphorylating its substrate)—or influence interactions—the basis of phenomenological models 
(i.e. an enzyme whose concentration changes the quantity of a metabolite, which in turn affects the 
level of another protein). 

There are two main difficulties with modelling complex biological systems:  

(1) The choice of scale and scope of the model. Stelling (2004) argues that mechanistic 
dynamical modelling is the most obvious candidate for achieving a system-wide understanding of 
biological systems. But scaling of such models to the whole-genome level is not easily achieved, 
while modelling molecular details is not always possible (nor always desirable). Therefore, it is 
extremely important to find the right compromise, that is, to choose the adequate scope and level 
of detail for a model. This compromise needs to be firmly and systematically grounded in the 
available preliminary evidence, and the research question at hand. 

(2) The choice of phenomenological modelling framework. Many important processes, such as 
eukaryotic transcriptional regulation, are not yet understood in molecular detail. Therefore, models 
need to approximate them at the phenomenological level such that the interactions among system 
variables are defined in an operational rather than a mechanistic way (Wolkenhauer & Mesarovic 
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2005). The problem is that there are many reasonable phenomenological modelling frameworks 
available. In most cases, it is not evident which alternative framework is best suited for a given 
problem. 

For these reasons, there is a clear need for sound and robust procedures to build mathematical 
and computational models of biological systems from the vast amount of data generated from the 
different ‗omics‘ disciplines today. One issue here is accessibility, standardisation and 
integration of large, heterogeneous datasets. Another is system identification, a key area in 
systems engineering, which deals with the development of mathematical models of dynamic 
systems from specific input/output datasets (Ljung 1999; Walter & Pronzato 1997). The modelling 
itself requires advanced techniques for multi-scale/hierarchical simulation, rigorous model 
validation/comparison, and uncertainty quantification. 

A third important aspect is developing a rigorous protocol for the systems biology modelling cycle 
(Fig. 1), which addresses all possible sources of errors in the cycle. Whereas a lab protocol is 
common practice for ―wet‖ experiments, it is not so for the ―dry‖ part. Systems biology requires a 
protocol for the complete cycle to integrate the whole biological knowledge discovery process. 
Experimental data analysis is not just producing clean datasets but also information about the 
experimental error to be used in distance measures and re-sampling strategies for rigorous 
validation (see below). Exploratory data analysis integrated with data from the literature extracts 
biological knowledge leading to a number of hypotheses that together with the assumptions are 
formulated into mathematical models. Extra assumptions will be required, like a choice of scale in 
time, space and chemical and molecular detail. To test these assumptions multi-scale models 
and coarse-graining techniques will be necessary. The numerical implementation of all models has 
to be verified for both parameter and state space (model verification). Using system 
identification the parameters (with uncertainties) of the model can be inferred from the data using 
adequate distance measures. System analysis addresses the propagation of uncertainties in 
parameters and state-variables in the model-results and validates the models with unseen data 
(uncertainty quantification and model validation). The surviving models can be trusted to reflect 
the hypotheses and a new cycle can be started by optimal experimental design to discriminate 
between alternative models or to obtain more data to improve existing models. State-of-the-art 
methods (indicated by blue colour in Fig. 1) will be developed, and will be combined with methods 
from fields yet to be explored (red in Fig. 1) into a rigorous protocol, which will be validated and 
tested. 

          

Figure 1. The Systems Biology Modelling Cycle. Blue indicates existing methods, red indicates innovative 
research (adapted from Kitano 2002). 
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B 1.1.2. Reverse-Engineering of Biological Networks 

The fact that most models dealing with complex biological systems are of a phenomenological 
nature implies that many model parameters cannot be measured directly. For example, 
connectionist gene network models (Mjolsness et al. 1991; Jaeger et al. 2004a) represent each 
regulatory interaction in a system by a single number (positive for activation, negative for 
repression), simplifying the complex molecular reality of transcription factor binding sites, 
enhancers, silencers, insulators and chromatin structure that determine the regulatory nature of a 
molecular interaction in vivo. Therefore, there is no straightforward connection between such a 
summary regulatory weight, and any measurable biophysical quantity (e.g. the dissociation 
constant, or fractional occupancy of a transcription factor at its binding site). 

Parameters that cannot be measured need to be inferred. This approach, called reverse-
engineering of biological systems, can be defined as the process of identifying regulatory 
interactions from experimental data through computational analysis. Gene expression data from 
microarrays (or more recently, RNA-seq) are typically used for this purpose (see, for example, De 
Smet & Marchal 2010). Microarrays provide quantitative expression data for a large number of 
genes, which is obtained by hybridizing extracted total RNA to oligonucleotide probes on the array, 
representing an integrated measurement of the state of cells in a tissue under specific conditions 
over time. Similarly, RNA-seq provides quantitative expression data for a large number of genes 
through deep sequencing of the extracted total RNA. Both microarrays and RNA-seq have the 
disadvantage that it is difficult to measure spatially specific expression patterns, which are 
important for problems in developmental biology, but also in genetic engineering and synthetic 
biology in animals and plants. In a number of cases, gene networks have been inferred from 
spatial gene expression patterns based on detection of mRNAs or proteins in living or fixed tissues 
or embryos (Jaeger et al. 2004a). Reverse-engineering of spatially distributed systems will become 
increasingly important for applications of bio-engineering and synthetic biology in the future. 

There are three main approaches that have been successfully applied to reverse-engineer 
metabolic, signalling, and gene regulatory networks (Bansal et al. 2007): the Bayesian Network 
(BN) approach, an approach based on information theory (mutual information—MI), and 
approaches based on differential equation (DE) models. Both BN and MI approaches are 
computationally efficient, and relatively easily scalable to large gene networks, but in general only 
allow us to obtain a topological (i.e. static) map of gene-gene interactions from the experimental 
data. Approaches based on DEs, on the other hand, aim at identifying a dynamical model of the 
underlying network, in addition to the identification of the static network map. Such models can be 
used to simulate network dynamics in silico. However, DE-based methods are computationally 
expensive and do not yet scale well beyond networks containing a relatively modest number of 
genes. 

Our main focus in this project is on reverse-engineering approaches based on DE models 
(although we will also use Bayesian inference and approaches based on mutual information where 
suitable, see below). Such approaches consist of four basic steps (see, for example, Reinitz & 
Sharp 1995; Jaeger et al. 2004a): (1) A suitable quantitative dataset is generated, which measures 
a combination of state variables (for example, mRNA or protein concentrations) of the system. 
(2) A general model—based on ordinary (ODEs) or partial differential equations (PDEs)—is 
formulated. (3) The model is fit to the data by means of global non-linear optimisation. Thereby, the 
model is solved numerically, and model parameters are altered while selecting solutions that 
resemble the data increasingly closely, until the model reproduces the data faithfully and reliably. 
(4) Biological insight is gained, and predictions are derived, by analyzing the dynamical behaviour 
and the parameter values of the solution. In this way, dynamical models are used as computational 
tools to extract regulatory information from data. 

B 1.1.3 The Model-Building Cycle 

Model building is an iterative process, usually represented as a cycle (Fig. 1). It starts from the 
definition of the purpose of the model. In other words, modelling must start with a specific question 
to be addressed, often induced by data analysis and knowledge from literature. This question 
conditions the selection of the modelling framework: Which components, and which processes 
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should be included? Which levels of detail (molecular, cellular, tissue-level, organismic) should be 
considered? Which processes can be approximated (and in which way)? Which ones need to be 
modelled in molecular detail? Once these questions are clarified, a modelling framework is chosen 
and a first mathematical model is proposed taking into account available a priori knowledge and 
preliminary experimental data. Often, one model will cover multiple hierarchical levels of detail 
(multi-scale modelling). 

Such preliminary models usually contain unknown parameters, which are difficult or even 
impossible to measure. These parameters must therefore be estimated by means of fits to 
experimental data (reverse-engineering). This process is called optimisation or parameter 
estimation (Ashyraliyev et al. 2009a). Most biological problems are highly complex and non-linear, 
such that model fitting is difficult and computationally expensive due to the large size and high 
dimensionality of parameter space as well as the presence of numerous local optimisation minima. 
Specialized, cutting-edge global optimisation algorithms, such as simulated annealing, 
evolutionary algorithms, or scatter search, are required to carry out precise, reliable and efficient 
global optimisation of network models (see, for example, Moles et al. 2003; Jaeger et al. 2004a,b; 
Perkins et al. 2006; Fomekong-Nanfack et al. 2007; Rodriguez-Fernandez et al. 2006b). In many 
cases, multiple optimisation criteria must be considered (goodness of fit, robustness or biological 
realism of the resulting mechanism, etc), and therefore, multi-objective optimisation (MOO) must 
be employed (Handl et al. 2007). The proper choice and implementation of optimisation criteria is 
the subject of a research field called measure design (Oberkampf & Barone 2006; Deb 2009). 

We need to know whether it is possible to uniquely determine parameter values (parameter 
identifiability analysis). Ideally this is done before parameter estimation has been carried out (a 
priori identifiability), but this is often difficult to achive (Walter & Prozato 1997; Jaqaman & Danuser 
2006). In these cases, parameter identifiability analysis is done after parameter estimation (a 
posteriori) (Gadkar et al. 2005; Balsa-Canto et al. 2010). This analysis not only uncovers which 
parameters are ill-determined, but also whether such parameter ‗sloppiness‘ is due to insufficient 
data, or parameter correlations within the model (Gutenkunst et al. 2007; Ashyraliyev et al. 2008, 
2009b). Finally, the model should be validated, i.e. a new or unused set of experimental data 
should be compared with the model simulations. Once this is done, the theory of optimal 
experimental design (OED) can be used to determine in which ways to expand our existing 
datasets to improve identifiability and uniqueness of optimisation solutions and to discriminate 
between rivalling models/hypotheses. 

Bayesian methods provide an alternative paradigm for model inference, parameter estimation and 
optimal experimental design (Lawrence et al. 2010). In the Bayesian framework we compute a 
posterior distribution of models (or model parameters), which is a weighted ensemble of models 
consistent with the available data and prior domain knowledge. In this approach we do not restrict 
ourselves to a single ―optimal‖ parameter or model but we identify a distribution, which captures the 
uncertainty of our parameter and model inference. Asymptotic Bayesian parameter inference (MAP 
learning) is very similar to the global optimization approach but non-asymptotic methods, e.g. those 
based on variational inference methods or Markov Chain Monte Carlo (MCMC) sampling, are quite 
different as they may retain a broad posterior distribution over models. The posterior distribution 
can be very naturally applied in the context of experimental design since we can select 
experiments that maximise the information gain by giving a large expected change to the posterior 
distribution, as quantified by some information theoretic divergence measure. 

Preliminary models provide predictions, which must be (in)validated with new experiments, 
revealing in most cases a number of deficiencies. Consequently, a new model structure and/or a 
new (optimal) experimental design must be planned. Model discrimination (also called model 
selection, not to be confused with the initial selection of the modelling framework described 
above) and model ranking methods are powerful tools that aid in the choice of alternative models 
(Vyshemirsky & Girolami 2008; Cedersund & Roll 2009). Model reduction can also be applied at 
this step, to simplify the optimisation procedure and/or the biological interpretation of results (Okino 
& Mavrovouniotis 1998; Radulescu et al. 2008). This process is repeated iteratively until the model 
is considered satisfactory. 
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B 1.1.4 Uncertainty Quantification 

Unfortunately, all parts of the cycle contain errors and uncertainties that collectively affect the 
predictions: (i) It is not always possible to acquire the relevant experimental data or the 
measurements contain uncertainties (systematic and random). (ii) The theoretical or mathematical 
model is not describing the reality (or more precisely, the quantities of interest) adequately. 
(iii) Simulating a mathematical model introduces numerical errors. And (iv), model parameters and 
initial conditions are not known (with sufficient precision) (Fig. 2) (for reviews on this subject see 
Karniakidis & Glimm, 2006; Oden et al. 2010a,b). The simplest approach is to quantify these errors 
separately. Verification—the error control of the numerical algorithms and the computational 
implementation—is often done when developing the algorithms but the resulting error estimates 
are mostly ignored or concealed. When inferring the model parameters, a probabilistic error 
estimate—assuming only known experimental errors—can be easily computed, but again these 
results are often not used in the subsequent steps of the cycle. Finally, the validation step is 
mostly neglected, sometimes due to a lack of experimental data, and if it is addressed there is no 
distinction made between validating the current model/parameter set with respect to the 
experimental data—re-sampling the dataset used for inferring and for validation—and validating 
the theoretical model e.g. by experimentally testing model predictions. 
 

 

 

 

 

 

 

 

 

 

 
 
Figure 2. Rigorous modelling needs to address all possible sources of errors to establish their influence 
on the knowledge based on the experiments, the theoretical model and computational model simulations 
(adapted from Oden et al. 2010). 

If the modelling cycle is put in a Bayesian framework, it is possible to link all errors in a probabilistic 
way and to discriminate between multiple heterogeneous models (Robert 2007; Vyshemirsky & 
Girolami 2008). In the Bayesian paradigm, probability distributions are used to describe data 
observation errors (stochastic) and model errors (uncertainty) in a consistent and well-defined way. 
This is an attractive unifying perspective, which we will pursue where possible, but it should be 
acknowledged there are very significant computational challenges when applying Bayesian 
methods over complex model spaces. An important focus of the Bayesian approach is therefore on 
the development of more efficient algorithms based on sampling (MCMC) and functional 
approximations (e.g. variational inference) (Lawrence et al. 2010). 

B 1.1.5 Biological and Biotechnological Applications 

The model building cycle described above can be applied to a wide range of scientific problems 
and biotechnological applications. Traditionally, academic research in the field has focussed on 
the study of metabolic, signalling or genetic networks involved in physiology or development (see, 
for example, Moles et al. 2003; Feng & Ratitz 2004; Jaeger et al. 2004a; Gadkar & Gunawan 2005, 
Honkela et al. 2010). In this context, the reverse-engineering approach is used to infer regulatory 
interactions among systems components, which explain the system's dynamical behaviour. 
Within our project, the academic partners will focus on such applications: microbial large-scale 
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metabolic and transcriptional networks (in S. cervisiae and E. coli), cellular signalling networks 
(focussing on the Chinese Hamster Ovary, CHO, cell line, used for the production of eukaryote-
specific products such as antibodies), and gene networks involved in biological pattern formation. 
These problems can be seen as benchmarks used to test and calibrate our methods.  

The true potential of reverse-engineering and optimisation lies in their application to industrial 
biotechnological processes, which is the main aim of this project. This involves the modelling of 
metabolic and gene regulatory processes (as described above), where the parameters to be 
optimised are engineered regulatory interactions and processes involved in the production of 
nutraceutical ingredients (food additives) or other components. In other words, reverse-engineering 
methods will allow biotechnology companies to design and optimize their production processes in a 
much more reliable, predictive and quantitative way. The successful application of these methods 
will have a tremendous impact on the industry. 

There are many more applications of reverse-engineering, which go beyond the scope of this 
project: for example, modelling complex proteomics datasets for diagnostics of complex diseases, 
prediction of chemical component candidates in rational drug design, complex sequence 
alignments arising in comparative genomics, or modelling of ecological networks to enable efficient 
resource management and protection policies. The methods developed in this proposal will be 
easily transferrable to a wide range of domains of application. 

B 1.1.6 Need for Novel Methods 

We have argued that modelling biological systems through reverse-engineering is a powerful and 
promising approach, with a large number of potential applications. However, this approach is still in 
its infancy. It has not yet been applied to many different systems, there is no general agreement 
yet which algorithms and tools are appropriate under which specific conditions, and there are no 
easy-to-use, integrated, cutting-edge software tools available for end users such as SMEs. 

In light of this, there is a clear need for novel, powerful and integrated methods for reverse-
engineering and biological modelling which are able to handle the special requirements that arise 
from complex biological datasets. In particular, our methods need 

 to be able to deal with uncertainty or noise in data, or incomplete datasets, 

 to enable effective integration and visualisation of databases and other heterogeneous data 
sources used for model development,  

 to support diverse, multi-scale models and rigorous procedures for model identification and 
validation, 

 to implement a diverse range of global, non-linear optimisation algorithms for parameter 
estimation, and to aid the user in choosing an appropriate cost function, 

 to enable a priori and a posteriori parameter identifiability analysis, 

 to allow us to implement optimal experimental designs for improving models based on evidence 
from parameter identifiability and uncertainty quantification, 

 to support methods for model comparison and ranking to chose the most appropriate 
phenomenological modelling framework for a given problem, 

 and finally, to implement powerful methods for computational analysis of the dynamical 
behaviour of a system, enabling us to gain biological insight from our models. 

We aim at both developing improved methods and implementing them in a unified, user-friendly 
software framework. Since many of these methods are computationally very intensive, particular 
attention will be paid to the computational implementation of these tools for high-performance 
(parallel) computing (incl. GPU-based machines). 



BioPreDyn - 289434    

 

Part B    8 

B 1.1.7 Objectives of the Project 

BioPreDyn aims to develop new bioinformatics methods and tools for data-driven, predictive 
dynamic modelling in biological and biotechnological applications. The main objectives of 
BioPreDyn are structured in four groups, three vertical (methodological) objectives and one 
horizontal (applications) objective, as shown in Fig. 3. 

               

Figure 3: Main Objectives of this Project: three vertical (methodological) objectives and one horizontal 
(applications) objective. 

The details of each objective and their relationship with the topics addressed by the call 
(KBBE.2011.3.6-01 Increasing the accessibility, usability and predictive capacities of 
bioinformatics tools for biotechnology applications) are as follows: 

Objective 1: To develop tools for integrating and exploiting databases, especially those with 
dynamic expression data. The key novelty here is the development of methods and tools for 
handling of databases and other data sources containing time- (and space-) dependent biological 
data. This objective fits well with the call, since integration of databases is one of the challenges 
mentioned explicitly. 

Objective 2: To implement innovative visualisation methods for data analysis and model 
development, with emphasis on dynamical models: as in the previous objective, a key novel aspect 
of our proposal is the consideration of biological data distributed over time and space. This 
objective also fits with the call, where innovative visualisation methods are highlighted as one of 
the main research themes. 

Objective 3: To develop integrated software tools and workflows to support the model building 
cycle: currently there is a lack of tools for supporting the full cycle of dynamic modelling and 
reverse-engineering biological systems. In this project we will develop proper procedures and 
workflows for multi-scale model identification and building, measure design, parameter estimation 
by global non-linear optimisation, parameter identifiability analysis, model comparison, and optimal 
experimental design. This approach fits perfectly with another key topic of the call: the need for 
increased interpretative and predictive capacity of data, taking into account the complexity of living 
systems. 

Objective 4: To apply these methods to a variety of illustrative biotechnological and biological 
problems in both academic and corporate settings: the new methods and tools to be developed in 
objectives 1–3 will be generally applicable. Their performance will be tested by considering several 
key biotechnological and biological applications: 

(a) Large-scale dynamic modelling of metabolism and gene regulation in microorganisms 
(Escherichia coli, Saccharomyces cerevisiae) and eukaryotic cell lines. 

(b) Cellular signalling networks with a special focus on the CHO cell line used for biotechnological 
production processes. 

(c) Inference of developmental gene regulatory networks in fruit flies (Drosophila) and cnidarians 
(Nematostella). 
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(d)  Mechanistic and comprehensive modelling of biotechnological production processes based on 
transgenic microorganisms. 

B 1.2 Progress Beyond the State-Of-The-Art 

B 1.2.1 Integration and Exploitation of Databases 

A cell can be described as an ensemble of interacting biological entities (messenger and other 
RNAs, proteins, metabolites, organelles, compartments, etc). In multi-cellular organisms, cells 
themselves interact within and between various tissues and organs. The hierarchical, collective 
behaviour of all these entities underlies the observed phenotypes. Great effort is being put into 
research identifying and mapping networks of interactions among biomolecules in various 
biological systems, from microorganisms to vertebrates/humans. Massive amounts of 
heterogeneous data concerning the levels and regulatory interactions of network components have 
been, and are being, collected by laboratories world-wide using a variety of high-throughput 
experimental techniques. There are many types of interactions depending on the molecules being 
considered, and the function being studied:  

Metabolic interactions were the first to be systematically mapped and, therefore, the field is quite 
advanced in prokaryotes and simple eukaryotes. We also have a good grasp of parts of the 
metabolic network in mammalian cells, which has been annotated and collected in public 
databases such as Reactome (www.reactome.org) and KEGG (www.genome.jp/kegg). 

Then there are studies mapping protein-protein interactions, where each protein is seen as a 
node in a network, and two proteins are connected by an edge if they are part of the same protein 
complex. Human protein interactions, for example, have been mapped using the yeast-two-hybrid 
technique (Y2H), and automated data mining of the literature. The HPRD database (www.hprd.org) 
contains more than 38,000 such interactions. 

Many studies have mapped transcriptional regulatory interactions. For example, chromatin 
immuno-precipitation techniques followed by microarray hybridisation (ChIP-Chip), or deep-
sequencing (ChIP-seq), have enabled the identification of transcriptional interactions among all 
known yeast transcription factors (Lee et al. 2002). Similar efforts are being undertaken in model 
organisms such as Drosophila (Li et al. 2008). The translation of these techniques to mammalian 
cells has proven to be more difficult, because it is not trivial to map binding sites to the genes that 
are regulated by them. New experimental techniques have been proposed for identifying enhancer-
promoter interactions (5C, Chia-PET) and may help solve this enhancer assignment problem. 

The recent discovery of microRNAs (miRNAs) and their biological functions has generated a global 
effort in identifying microRNA targets. Several targets of miRNAs in human have been identified 
both experimentally, and by sequence/expression analysis. These have been collected and 
annotated in databases such as miRBase (microrna.sanger.ac.uk). 

In addition, recent efforts have begun to identify all of the human protein kinases and their 
phosophrylation targets. Machine learning techniques have been successfully applied to identify 
kinase targets. These predictions are available in public databases (e.g. networkin.info). 

Large datasets describing gene expression profiles are available from databases, such as 
ArrayExpress (www.ebi.ac.uk/arrayexpress), the Gene Expression Omnibus (GEO; 
www.ncbi.nlm.nih.gov/geo), or NCBI‘s short-read archive (SRA; www.ncbi.nlm.nih.gov/sra; for 
RNA-seq data). Due to standardisation (e.g. the MIAME standard for microarray data), it is 
relatively easy to exchange this type of data. 

While repositories for microarray data have become very common, there are still very few 
databases providing spatial expression patterns. Two large-scale efforts are the Berkeley 
Drosophila Genome Project (BDGP) in situ database (www.fruitfly.org/cgi-bin/ex/insitu.pl) and the 
Edinburgh Mouse Atlas (genex.hgu.mrc.ac.uk). Both of these databases provide data for a large 
number of genes at a limited number of time points. The FlyEx database, on the other hand, 
provides data for a moderate number of genes involved in segment determination, but at a high 
spatial and temporal resolution (urchin.spbcas.ru/FlyEx). 

These repositories provide an unprecedented wealth of data for modelling biological systems. But 
there are serious unresolved problems. Despite the rapid increase in available data, the 
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measurements required for a specific modelling task are often missing or incomplete. Data 
heterogeneity poses further serious challenges for the model builder. 

In this project, we aim at addressing problems such as these. We plan to provide database 
infrastructure and standardise software tools for integrating and combining different 
heterogeneous sources of data in a coherent and systematic way. We will establish workflows that 
allow the modeller to choose appropriate data from diverse repositories, such as pathway (e.g. 
KEGG, Reactome), protein-protein (MINT, IntAct, HPRD, STRING), transcription factor 
(TRANSFAC, Jasper), kinase-interactions (NetworKIN), and miRNA-target databases (miRBase) 
as well as expression data from sources such as ArrayExpress or GEO. These workflows should 
also allow the user to include predicted interactions from high-quality and experimentally validated 
computational software and text-mining, and to add annotation (e.g. on protein modifications, gene 
ontology etc) from genome databases (such as FlyBase, USCG and ENSEMBL). We will have 
direct access to these resources, many of which are located at EMBL-EBI. The collected data will 
be stored in the NetBase infrastructure developed at FTELE.IGM (unpublished). 

On the foundation of the database structure described above, we will develop editors to create 
data files for modelling. We will combine standards for models (SBML; Hucka et al. 2003), model 
simulations (SBRML; Dada et al. 2010), and data (MIAME for gene expression; Brazma et al. 
2001, MIAPE for proteomics, etc.). 

We will then develop appropriate interfaces linking our databases to tools that will be used for 
analysis, visualisation and modelling. These include the tools to be developed during this project, 
as well as existing software such as CellNOpt (Saez-Rodriguez et al. 2009), a tool to construct 
logical models based on prior knowledge and high-throughput data and state-of-the-art 
visualisation tools (see Section 1.2.2 below). 

B 1.2.2 Data Visualisation and Analysis 

Model building requires both integration and abstraction, based on the complex datasets described 
in the previous section. We need to be able to identify the relevant components and interactions for 
our model. We need to see trends, and clusters of data points. We need to be able to filter out 
uninformative variables and identify anomalous or unusual data points (outliers). We need to pick 
out interesting features from the data at one glance. To enable such things, we need powerful tools 
for data visualisation and analysis, which go beyond what is already available in the scientific 
literature. 

In this project we aim at advancing the state of the art developing tools that allow researchers to 
analyze the precise timing and localization of gene expression, compare spatio-temporal patterns 
across species, and visualize variability (e.g. within embryos and between embryos in 
developmental systems). We will build on expertise and existing tools within the consortium. For 
example, DataRail is a toolbox for managing, transforming, visualizing, and modelling data, in 
particular the multi-dimensional, high-throughput data encountered in systems biology (Saez-
Rodriguez et al. 2008). We will extend DataRail (in a collaboration between EMBL, UShef and the 
Sorger Lab at Harvard) by including non-linear dimensionality reduction techniques such as the 
Gaussian Process Latent Variable Model (GPLVM, introduced by UShef; Lawrence 2005), which 
allow for visualisation of very high-dimensional datasets, which often contain non-linear low-
dimensional structure. The GPLVM has now been extended to the analysis of time-series datasets 
and hierarchical models and has been successfully applied in a diverse set of domains, e.g. 
robotics, animation and tracking, but has not yet been widely applied in analysis of biological data 
or models. We expect that this and other recent developments from the field of machine learning 
will provide additional flexibility and power to DataRail.  

While DataRail provides useful visualisation of high-throughput multivariate time-course data 
without spatial structure, we are also interested in developing tools for spatial time-course. We will 
therefore integrate existing methods developed in collaboration between partners CRG and UvA, 
which systematically analyze and compare spatial gene expression patterns. 

The consortium also has unique expertise in low-level processing and data analysis of high-
throughput data using probabilistic models. The puma (propagating uncertainty in microarray 
analysis) package allows robust model-based clustering, identification of significant multi-factorial 
trends and dimensionality reduction of high-dimensional data while properly accounting for the very 
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noisy and heteroscedastic nature of gene expression data (Pearson et al. 2009). These tools are 
being extended to more diverse datasets such as RNA-seq and ChIP-seq and the current project 
will provide a useful interface to these methods, which can be used to identify clusters and patterns 
in data without confounding by outliers and noisy variables. 

B 1.2.3 The Model-Building Cycle 

Although software tools exist for most of the individual steps in the model-building cycle (see 
Fig. 1), these tools are often neither straightforward to use, nor are they necessarily consistent and 
interoperable. Different algorithms (for parameter identifiability analysis, or parameter estimation, 
for example) are often implemented within distinct code frameworks. This makes comparison and 
application to different problems difficult. Moreover, many of these cutting-edge software tools use 
idiosyncratic, non-standard input-output data formats, which need to be tediously converted to 
combine them in an integrated workflow. 

In this project, we will advance the state-of-the-art by developing novel methods, integrated 
software tools and workflows to support the full model-building cycle. This effort will specifically 
target new methods and tools for: 

a. data integration, analysis and visualisation (see sections 1.2.1 and 1.2.2) 
b. model building, with a special focus on multi-scale modelling, 
c. robust parameter estimation via global, non-linear optimisation, 
d. parameter identifiability analysis (theoretical, practical), 
e. model validation, 
f. model selection and model discrimination, 
g. optimal experimental design, 
h. design/comparison of measures e.g. for multi-objective optimisation, 
i. uncertainty quantification. 

Multi-Scale Modelling 

From its origins in the 1990s (Broughton, 1999), multi-scale modelling and simulation has now 
turned into a focal point of attention across scientific and engineering disciplines. Many 
communities (ranging from physics and biology to medicine, finance, and engineering) are 
confronted with the problem of understanding multi-scale systems that are central to their field. The 
inherent complexity of biological systems is well recognised; they are multi-level systems that 
require a multi-disciplinary approach bridging a wide range of temporal and spatial scales (Sloot & 
Hoekstra 2010). Even biological phenomena in a single living cell span over a wide range of spatial 
and temporal scales and the number of molecular species involved can vary significantly.  

 

Current silicon cell platforms can often make reliable predictions for metabolic networks based on 
ordinary differential equations (ODEs; Fig. 4). For biochemical networks with membrane-bound 
molecules (e.g. signalling pathways), or in eukaryotic cells in general, methods based on partial 
differential equations (PDEs) are an appropriate approach.  However, it is known that the process 
at the very origin of the whole cellular machinery, gene expression, gives rise to fluctuations in the 
concentration of the final protein products (Halford & Marko 2004, Becskei et al., 2005). The 
discrete nature of matter under low-molecule-number conditions violates the continuum hypothesis 
used in ODEs and PDEs (Dobrzyński 2011). A model accounting for this is based on the chemical 

Figure 4: Regimes and models in biochemistry (Dobrzyński et 
al. 2007). Network models placed in correlation-length versus 
number-of molecules space. Abbreviations for (1) models with 
space: BD—Brownian dynamics,  PDE—partial differential 
equation, RDME—reaction-diffusion master equation, and (2) 
models without spatial detail: CME—chemical master equation, 
ODE—ordinary differential equation. ODE and PDE are 
deterministic models; CME, RDME and BD are stochastic. The 
correlation length is a measure of the typical length scale at which 

a system retains its spatial homogeneity. 
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master equation (CME, van 
Kampen 1997), a deterministic 
linear ODE for the evolution of 
the probability density function 
for a Markov process. The CME 
approach remains valid as long 
as the system is well-mixed. 
The question is whether this is a 
correct assumption when 
dealing with gene expression. 
Since there is a specific binding 
site, which needs to be found by 
a relatively small number of 
competing transcription factors, diffusion might limit the process thus giving rise to larger 
fluctuations (Metzler 2001). In order to resolve single diffusive encounters between bio-molecules a 
more detailed approach such as Brownian dynamics (BD, Allen & Tildesley, 2002) is needed. 
Unfortunately brute-force BD is too computationally expensive for large network simulations. More 
promising candidates for a versatile multi-scale framework are methods based on the reaction-
diffusion master equation (RDME, Gardiner 1983)—an extension of CME for spatially distributed 
systems. 
In this project, we will systematically compare different frameworks to model biochemistry in terms 
of their ability to capture specific aspects of a system, and in terms of their interaction with 
algorithms for parameter estimation and model analysis. 

For more complex systems we will use the multi-scale modelling methodology developed in the 
COAST project, coordinated by the UvA (Hoekstra 2010).Here, the building blocks of a multi-scale 
model are single scale models and their mutual multi-scale couplings. Many, if not all, multi-scale 
models lend themselves to such a partitioning strategy (Bassingthwaighte 2006, Sloot & Hoekstra 
2010). The multi-scale model can be represented as a directed graph on a Scale Separation Map 
(SSM), which is a plot that has the relevant range of scales on its axes (usually space and time, 
but other quantities are possible). Single-scale models are positioned on the SSM according to 
their characteristic scales, and the coupling templates are represented as directed edges (Fig. 5). 

Generic coupling strategies have been identified to interconnect several sub-models, each 
representing a different process at different spatio-temporal scales and corresponding to one com-
ponent of the whole system. In addition to theoretical concepts, a coupling soft-ware environment 
(MUSCLE; www.berlios.de) has been developed and made available as open source, to build 
multi-scale applications. Within MUSCLE, both the kernels (i.e. the single-scale models) and the 
conduits (i.e. the multi-scale coupling) are software agents of the underlying multi-agent platform 
JADE (www.jade.tilab.com). The single-scale models do not need to be aware of each other, the 
information on the coupling and the global set-up are held by the framework. This allows the 
implementation of complex interfaces, where multi-scale couplings are performed by smart 
conduits. Furthermore, the structure of the coupling library allows complete independence from 
native codes. These can be replaced with a different source, provided the interface with the JAVA-
wrapper agent remains the same. 

The MUSCLE framework is currently being adapted by a number of EU projects, e.g. in the VPH 
domain (e.g. MeDDiCa) and in a project to realize Distributed Multi-scale Computing (MAPPER) 
applying MUSCLE again for VPH applications, but also in the field of computational biology, fusion, 
engineering, and nano-material science. 

A challenging biomedical problem has been modelled with this approach, in-stent reste-nosis 
(Hoekstra 2010), which demonstrates the potential of this approach. We will use it in our project to 
integrate single-scale models on the molecular-, cellular- and tissue-level into multi-scale models 
and simulations of whole-cell, genomic regulatory networks in microorganisms, cell-cell signaling 
cascades, developmental gene regulatory networks involved in pattern formation, and integrated 
biotechnological production processes. 

Model Selection/Model Discrimination 

Figure 5: The Scale Separation Map and decomposition of a multiscale system: 
left, a multi-scale model spanning many temporal and spatial scales; right, the 
resulting decomposed model, consisting of 5 coupled single scale models. 
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During the modelling process of biological (or other types of) phenomena it is not uncommon that 
several model frameworks can be proposed as descriptive for those phenomena (see above). A 
natural question that immediately arises is which model variant is best supported by the available 
data. For deterministic models the current standard is that validation and model discrimination is 
based on statistical testing (for a review, see Cedersund & Roll 2009). A number of residual-based 
information criteria can be used, e.g. AIC and BIC (Akaike and Bayesian), the likelihood ratio test, 
and the F-test. Unfortunately, these criteria do not always result in a definitive answer, and their 
underlying assumptions may be invalid for complex, high-dimensional models. Bootstrapping—
generating artificial data with the model to be tested against—can improve the reliability of the 
tests. Many of these statistical tests require that competing models are nested—i.e. have the same 
network structure—so they are especially useful for small model changes or to test various 
parameter vectors against each other. 

If the model is of a probabilistic nature or the data are associated with a noise model then the 
support for the model given the data can be assessed through computation of Bayes factors. 
Bayesian inference has been shown to be a consistent framework for model comparison. A Bayes 
factor is the ratio of the probability for one model, M1, given the data, D, to another model, M2. The 
ratio of these probabilities P(M1|D) / P(M2|D) gives an idea of which model is better supported by 
the data (Gelman et al. 1995). A further advantage of the Bayesian approach is that it gives a 
principled way in which further data sources can be integrated, for example, if the data from one 
experiment are denoted D1 and an additional experiment is denoted D2 the two data sets can be 
assimilated through Bayes‘ rule: P(M1|D1, D2) = P(D2|M1) P(M1|D1) / P(D2). This allows for a cycle of 
model and experiment, where at each stage of the cycle new data from the experiment is 
assimilated with the existing knowledge. The principal difficulties associated with the approach are 
(1) encoding the modelling assumptions in a probabilistic manner, and (2) performing the 
necessary parameter integrals to compute the marginal likelihood of the model given the data. 
These two challenges interrelate: the more complex the probabilistic representation of the model, 
the more challenging the resulting integrals. However, the potential rewards are great and recent 
algorithmic advances mean that this Bayesian approach to model selection is now practically 
applicable to systems biology models (Vyshemirsky & Girolami 2008).The Bayesian approach 
deals naturally with parameter insensitivities (sloppiness in the parameters) through prior 
distributions. Parameters that are not identifiable simply retain the same distribution a posteriori 
(i.e. the posterior distribution) to their a priori specified distribution (the prior distribution). The 
presence of the non-identifiable para-meters is then easily checked through information theoretic 
measures of the dissimilarity between the prior and posterior distributions (such as the Kullback 
Leibler divergence, or information gain). The USheff group are world-leading in development of 
Bayesian models which integrate mechanistic assumptions (such as differential equations) but 
retain tractability such that potential network interactions can be validated through Bayes factors 
(Honkela et al. 2010). 

Parameter Estimation by Global Non-Linear Optimisation 

Given a specific modelling framework and a set of experimental data, we aim to calibrate the 
model. That is, we need to estimate parameter values, which cannot be measured directly, so as to 
fit the experimental results in the best possible way (Jaqaman and Danuser 2006). This is done by 
minimising a cost function, which measures the goodness of the fit (or alternative criteria, such as 
the robustness of the solution). Cost functions that have been shown to work well in practice 
include (i) the Bayesian estimator, (ii) the maximum likelihood estimator, and (iii) the (weighted) 
least squares estimator (Schittkowski 2002). 

Estimating the parameters of non-linear dynamical models is difficult, since these models usually 
exhibit a large number of sub-optimal local minima (Schittkowski 2002). Traditional, local 
optimisation methods based on direct search or gradient descent are not suitable for such 
problems, since they tend to get stuck in these local minima. For this reason, there is no way of 
knowing if a bad fit is caused by a flaw or omission in the model formalism, or if it is simply a 
consequence of local convergence. 

Therefore, we must resort to robust nonlinear optimisation techniques (Mendes & Kell 1998), which 
provide more guarantees of converging to the globally optimal solution (Moles et al. 2003). 
Examples of such techniques are simulated annealing, evolutionary algorithms, or scatter search 
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(see, for example, Moles et al. 2003; Jaeger et al. 2004a,b; Fomekong-Nanfack et al. 2007; 
Rodriguez-Fernandez et al. 2006b). The importance of using global optimisation methods for 
parameter estimation in systems biology has been increasingly recognized in recent years (Zwlolak 
et al. 2005; Tsai and Wang 2005). 

Global optimisation methods can be roughly classified as deterministic, stochastic and hybrid 
strategies. Deterministic methods can guarantee—under some conditions and for certain 
problems—the location of the global optimum solution. Nevertheless, no determi-nistic algorithm 
can solve global optimisation problems of the class considered here with certainty in finite time. 
Stochastic methods are based on probabilistic algorithms, and they rely on statistical arguments to 
prove their convergence in a weak way. However, many stochastic methods can locate the vicinity 
of global solutions, but the associated computational cost is usually very large. In order to 
surmount this difficulty, hybrid methods and meta-heuristics have been recently presented 
(Rodriguez-Fernandez et al. 2006a) that speed up these methodologies while retaining their 
robustness. 

The current challenge is how to perform parameter estimation in large-scale dynamic models. 
Although medium and large-scale dynamic models have been recently presented, these studies 
did not perform a proper full parameter estimation from experimental data (in most of them, 
subsets of kinetic data were chosen following ad hoc estimations, or were taken from the 
literature). Thus, there is a need to develop scalable parameter estimation methods, which are able 
to calibrate large-scale dynamic models of biological systems. 

Measure Design: Cost Functions for Multi-Objective Optimisation 

One major issue for parameter inference is that the observed dynamical behaviour of the system 
can often be explained by distinct regulatory mechanisms. This can be due to the optimisation 
problem being ill-posed or being insufficiently constrained by data (Ashyraliyev et al. 2009a). 
Alternatively, parameters can be difficult to determine due to correlations between them 
(Gutenkunst et al. 2007; Ashyraliyev et al. 2008; 2009b). Model discrimination based on additional 
experimental evidence is required to decide, which of the alternative mechanisms is applicable to 
the real biological system (see also above). This is often time-consuming and technically 
challenging. Therefore, it is essential to increase the reliability of the model results for experimental 
design and to decrease the number of alternative predictions that need to be tested experimentally. 

One way of achieving this is to change the metric that measures the distance between the 
experimental data and the model results. Usually, the accuracy with which a model reproduces 
observed expression patterns is measured by a cost function based on the sum of squared 
differences between model and data (single-objective optimisation). The first option is to change 
the metric based on uncertainty quantification (UQ). Following Oberkampf & Barone (2006) a 
metric should take into account (i) the simulation error, (ii) the predictive accuracy of the model 
(obtained by UQ), (iii) the number of experimental measurements, (iv) the experimental 
measurement errors, and (v) the error resulting from data post-processing. Contrary to these 
authors recommendation we do not exclude ―adequacy indications‖ in the metric, like e.g. 
robustness, but we stress the importance to redesign model validation, discrimination and 
experimental-design procedures based on the new metric. This is a challenging task, but required 
for the reliability of the predictions. 

Another way to distinguish between alternative mechanisms is to include additional objectives in 
the metric (multi-objective optimisation) (Handl et al. 2007). For example, we can take advantage 
of the fact that biological regulatory processes must proceed reliably in the presence of molecular 
fluctuations, genetic variability and environmental perturbations. In other words, realistic biological 
processes are robust, and robustness should be considered when fitting models to data. 
Preliminary efforts have been made to apply multi-objective optimisation to reverse-engineering 
gene networks (van Someren et al. 2003; Esmaeili et al. 2009; Guo et al. 2009). In this project, we 
will extend these efforts in a systematic way. 

Parameter Identifiability Analysis 

Before performing the optimisation to infer the model-parameters from the experimental data one 
would like to know if the parameters can be determined at all, assuming that for all observables 
continuous and error-free data are available. This is the subject of a priori or structural identifiability 
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analysis. For linear models the Laplace transform approach can be used (Godfrey & Fitch 1984), 
for nonlinear models the oldest method is the Taylor or power series expansion (Pohjanpalo 1978). 
Another classical method is the similarity transformation (Vajda et al. 1989). Recently methods 
have been developed that use differential algebraic techniques (Audoly et al. 2001) which are 
implemented in the symbolic language REDUCE in a publicly available software tool DAISY (Bellu 
et al. 2007). Although this brought a priori analysis within reach of the biologists (see e.g., Roper et 
al. 2010), for realistic large-scale models it is still very difficult to obtain results. Therefore one often 
has to rely on a posteriori identifiability analysis once the parameters have been estimated. This 
analysis studies the influence of accuracy and sufficiency of the experimental data on the 
uncertainty in the model parameters. The most applied method to study this uncertainty in the 
parameters is to compute the Fisher Information Matrix (FIM, Hydalgo & Ayesa 2001) evaluated for 
the given data points and the parameter vector obtained by the data fit. The FIM describes an 
ellipsoidal confidence region, from which confidence intervals and correlations can be computed. 

This analysis is easy and cheap to perform but it is also linear and local with respect to the 
parameters. A nonlinear analysis can be performed by Monte Carlo sampling of the parameter 
space around the parameter vector. Hengl et al. (2007) propose another interesting nonlinear 
analysis: repeated fitting for different initial guesses of the parameter vector. The resulting 
parameter vector matrix is then analyzed with Alternating Conditional Expectation (Breiman & 
Friedman 1985) resulting in optimal transformations for the parameters to come to an identifiable 
model.  

Finally, as stated above, Bayesian parameter estimation provides a natural framework for 
assessing parameter identifiability. The prior and posterior parameter distributions capture the 
uncertainty in parameter estimates before and after observing some data (simulated from the 
model or experimental). Parameters, which are difficult to identify are associated with a small 
difference between the prior and posterior, usually quantified by the Kullback-Leibler divergence or 
some other convenient divergence measure. An advantage of the Bayesian approach is that we 
can retain this uncertainty information for poorly defined parameters and model predictions are 
made by integrating over the distribution of parameters, rather than making an arbitrary choice 
between unlikely specific parameter sets. Parameter identifiability is intimately related to optimal 
experimental design since we would like to select experiments that are informative with respect to 
important model parameters. Again, this can be achieved in a Bayesian context by selecting 
experiments that are most likely (given the current posterior distribution over models) to improve 
our knowledge about parameters of interest. In this project we will extend Bayesian parameter 
identifiability analysis to differential equation models over graphs. This is a challenging problem 
since the model likelihood will be expensive to compute, requiring numerical integration, and we 
will therefore investigate speed-ups to avoid excessive simulations. 

Model validation  

Model validation checks whether the model agrees with the biological data/evidence. Most often 
this is done in a qualitative way based on the inferred model, e.g. by graphical inspection of the 
model results versus the experimental data or by looking at the residual of the objective function. A 
rigorous model validation however requires either independent validation data or cross-validation 
(Geisser 1993). The reason is that the inferred model will in general better fit the ―training‖ data 
than any other independent sample of the data (over-fitting). Cross-validation predicts the model-fit 
to a hypothetical validation set when an explicit validation set is not available. A common type of 
cross-validation is resampling (repeated splitting of the data in training/validation data). 

A good measure of the distance between model and data will enhance the reliability and the 
functionality of the model validation (Oberkampf & Barone 2006). 

A general validation procedure in a Bayesian setting is proposed in Babuška et al. (2008). Here the 
validation data is used to produce a Bayesian update of the model and the distance between the 
updated model and the original one determines whether the model is acceptable. 

Optimal Experimental Design 

Performing experiments to obtain a rich enough set of experimental data is costly and time-
consuming. For this reason, Optimal Experimental Design (OED; Kreutz & Timmer 2009) is a 
critical step in the systems biology model building cycle (Fig. 1). The purpose of OED is to devise 
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experiments in such a way that model parameters can be estimated from the resulting 
experimental data with the best possible statistical quality, which is usually a measure of the 
accuracy and/or de-correlation of the estimated parameters (Kutalik et al. 2004; Gadkar et al. 
2005; Kremling et al. 2004; Feng et al. 2006; Casey et al. 2007; Banga & Balsa-Canto, 2008). In 
other words, based on candidate model frameworks, we seek to design the best possible 
experiments in order to facilitate system identification. To achieve this, OED relies on statistical 
analysis and optimisation techniques. While OED applied to linear steady-state models is a well-
established subject, OED of non-linear dynamic models is more challenging and no satisfactory 
methods are available at his point. 

Several slightly different criteria for OED—denominated by an alphabetic nomenclature (Kiefer 
1959)—are defined for this purpose. All of these are based on the Fisher information matrix. After 
selection of a suitable criterion, different approaches can be used for obtaining an optimal 
experiment. One approach—followed by Melas (2006)—tries to transform the problem into a 
Chebyshev system. From this system, a Chebyshev polynomial is constructed, which is used to 
base the experiment on. Another approach—used by Asprey & Macchietto (2002), Balsa-Canto et 
al. (2008) and Bauer et al. (2000)—converts the problem into a (semi-infinite) optimisation control 
problem. 

In this project we will formulate the general problem as a mixed-integer dynamic optimisation 
(MIDO) problem, and will develop algorithms for its numerical solution. These algorithms for MIDO 
can be obtained using direct methods, which transform the original problem into a mixed-integer-
nonlinear programming (MINLP) problem via parame-trisations of the controls and/or states. 
However, because of the frequent non-smoothness of the cost functions, the use of gradient-based 
methods to solve this NLP might lead to local solutions. As for parameter estimation (see above) 
there is a need of global optimisation methods to ensure proper solutions. Stochastic methods for 
global optimisation are the most robust methods for this class of problems (Banga & Balsa-Canto, 
2008). However, the challenge remains to apply these methods to realistic, large-scale kinetic 
models of biological systems. 

Another approach we will consider is Bayesian optimal experimental design. Above we described 
the Bayesian perspective on parameter identifiability, which is based on assessing the difference 
between prior and posterior distributions after observing some data. We can also use Bayesian 
methods to investigate the expected change in the posterior distribution given an experiment or a 
sequence of experiments by averaging over the experimental outcomes given current beliefs 
(captured by the current posterior distribution). This allows us to seek experiments producing the 
largest expected information gain. This relates also to the problem of choosing an appropriate 
measure (which parameters or model outputs to focus on) and it would be interesting to explore 
the relationship between Bayesian methods and multi-objective methods by considering Bayesian 
inference applied over a range of cost functions. 

Uncertainty Quantification 

Uncertainty quantification (Karniadakis & Glimm 2006, Ghanem & Wojtkiewicz 2004) studies the 
propagation of numerical errors and model errors caused by e.g. limited data, sloppy parameters, 
inaccurate input values, etc. The classical statistical approach for UQ is Monte Carlo. The 
parameter space is sampled and model simulations, with each parameter drawn from its 
uncertainty distribution, produce an ensemble of random results. This results in a probality density 
function for the outcome. The convergence, however, of this process is very slow. Accelerating 
techniques are a.o. Markov Chain Monte Carlo (Smith 1984), and Latin hypercube sampling 
(McKay et al. 1979). A more economical approach is the sensitivity method that is based on 
moments of samples, but this is less robust. 

A non-statistical method, the Polynomial Chaos (PC) expansion (Ghanem & Spanos 1991) has 
been used frequently in the last years. It is based on an hierarchical representation of the 
stochastic process (like spectral expansions). The PC method or its variants have been applied to 
a number of applications, a.o. to stiff systems (Cheng & Sandu 2009). 

In this project both the statistical and the non-statistical approach will be used. The latter is more 
suitable for systems with a small number of uncertainties with a large variance in the value; the 
former is conceptual simple, but requires a HPC implementation. 
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B 1.2.4 Application: Large-scale Models of Microorgansims and Eukaryotic Cell Lines 

In this project, we aim to develop mathematical and computational strategies to create large-scale 
models using data from multiple sources. This includes metabolic networks as well as gene 
regulatory networks. The final aim of constructing such detailed models is to exploit them in 
biotechnological applications, typically making use of computer aided metabolic engineering 
procedures. 

The structure of metabolic networks is approachable by a reconstruction approach using data from 
genome annotation, metabolic databases and chemical databases such as ChEBI and KEGG 
(Palsson & Thiele, 2010). In addition to the structure of the network, we then proceed to set 
generic rate laws to represent the kinetics of all algorithms and finally fill in details of the precise 
mechanisms of those reactions that are known in detail. This strategy leads to a kinetic model that 
is as accurate as current knowledge allows, which can be explored using various modelling 
analyses coming from the methods developed in this project. The application of these models to 
biotechnology has a wide application range, for example for metabolic engineering, where existing 
metabolic pathways are altered to increase yield and/or flux of compounds of commercial interest. 
Another area where these models are useful in biotechnology is in optimization of strains and 
culture conditions for improved production of biopharmaceuticals. In both of these cases, and 
others, kinetic models allow us to identify multiple points in the network which can be modulated for 
optimal production. Stochiometric models, such as flux balance analysis, even though very useful, 
provide only a limited level of prediction with little or no extrapolation power. Metabolic kinetic 
models, which are obtained by adding kinetic rate laws with appropriate parameter values, are 
much more informative because they provide extrapolation power, however they are only 
appropriate while genetic regulation is not relevant. To be fully predictive one needs to extend the 
metabolic kinetic model to include gene regulation; the combination of kinetic models and gene 
regulatory models is thus of great importance to biotechnology. 

We have experience of developing metabolic reconstructions and further develop them to large 
kinetic models, having applied this process to Saccharomyces cerevisiae (Smallbone et al. 2007; 
Herrgard et al. 2008; Dobson et al. 2010; Smallbone et al. 2010). Here we will continue developing 
the approach while applying it to other organisms of biotechnological interest: S. cervisiae, E. coli 
and Chinese Hamster Ovary (CHO) cells. Development of these new large-scale models is not 
without challenges: while there are reconstructions of metabolism of E. coli already, there is no 
large-scale metabolic kinetic model for this organism, let alone a combined metabolic and gene 
regulatory network model. The same applies to CHO cells, with the added challenge of being 
higher eukaryote cells. 

An important area of research in constructing these large kinetic models, is the choice of kinetic 
rate laws to use for each reaction mechanism. We have previously used the lin-log kinetic type but 
have continued studying several other options, such as convenience kinetics and other generic 
rate laws formulated with similarity to mechanistic enzyme kinetics rate laws (Liebermeister et al 
2010). In any case, the model will contain a large number of parameters that must be estimated. 
We start by collecting information about the thermodynamics of reactions with estimates of 
equilibrium constants. This is followed by a global fit to data from reaction fluxes and metabolite 
concentrations, obtained from flux balance analysis and metabolomics studies. This parameter 
estimation exercise is carried out using our methods including stochastic and hybrid global 
optimisation algorithms (Mendes & Kell 1998, Rodriguez-Fernandez et al. 2006a). Finally the 
results of parameter estimation are followed by parameter sensitivity and identifiability analysis to 
uncover which ones may need more accurate estimates, and those which the model is robust 
against. In particular, it is important to carry out global sensitivity analysis, for which we also use 
optimisation methods (Sahle et al. 2008). 

We have also considerable experience in reverse-engineering gene regulatory networks (Bansal et 
al. 2007). As opposed to earlier studies, our goal is to learn a dynamic model of the network, rather 
than a static network map, by analyzing massive experimental datasets, including all the available 
gene expression data and taking into account prior knowledge. For these reasons, it will be 
necessary to also consider a probabilistic framework of gene interaction. In such a framework, the 
model M is learned from data D, by maximising a probability function, which can be converted to 
an equivalent problem using Bayes‘ rule which naturally includes prior knowledge. Also once we 
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have learned the model M, for a new dataset D1 we can ask what is the probability that D1 has 
been generated by model M. The most general method in this category consists of dynamic 
Bayesian networks. 

Bayesian networks, however, do not scale well with increasing biological system size, due to the 
heuristic step required when identifying the correct model M. In this step the Bayesian network 
approach needs to try different topologies of the network. Although the method does not need to 
search them exhaustively, it has to search a large enough space to be sure that a good solution is 
found. Due to the sheer size of the network (>20,000 genes), even searching a small space is 
challenging with current computational power. 

Another approach, which can deal with such complexity, consists of association networks based on 
mutual information (MI) (e.g. Margolin et al. 2006). In this case, model space is restricted to pair-
wise interactions. One limitation of this simplification is the loss in the ability to identify direct 
interactions, as compared to indirect interactions. This approach lacks the ability to include prior 
knowledge, as well as the ability to interpret new data. 

In order to overcome the limitations of these methodologies, we need to develop a novel method 
that satisfies all of our required features: scalability, inclusion of prior information, and particularly 
the requirement of being able to interpret new data. In order to obtain a predictive dynamic model 
able to satisfy the required features, we will explore a Bayesian approach, in which we will learn a 
probabilistic model for each pair-wise (and possibly three-way) interaction across all the genes 
using all the information available in NetBase (see Section 1.2.1), thus overcoming the problem of 
learning massive networks using classical Bayesian approaches. Each pair-wise interaction will be 
modelled as a continuous, or discrete, probability distribution, whose unknown parameters will be 
learned from the expression data and from prior knowledge. Prior knowledge in NetBase will be 
captured by setting a prior distribution on the parameters to be learned. We will need to investigate 
the most appropriate functional form of the prior distribution, depending on the kind of prior 
knowledge. For each interaction between two genes, we will learn a general hierarchical Bayesian 
model. We plan to use a Monte Carlo Markov-Chain approach to find the posterior probability of 
the parameter(s) of the probability distribution, from the observed expression data, and from prior 
knowledge. 

This new methodology will be tested by application to the creation of a dynamic gene regulatory 
network model of E. coli. Subsequentely this gene regulatory network will be integrated into the 
kinetic model of metabolism resulting in a comprehensive predictive model of E. coli, which will be 
an invaluable resource for biotechnology. Such a model allows to predict the effects that are not 
just limited to metabolic regulation, but also to to responses that include altered gene expression. 
While not being a fully mechanistic model (i.e. may not include significant aspects of the 
mechanistic details of the underlying molecular interactions), such a model is much more than a 
phenomenological model, and can be seen as a stepping stone towards a global (systems) 
understading of the biochemistry and genetics of one of the most important host cells for 
biotechnology.  

B 1.2.5 Application: Signalling and Regulatory Networks in Eukaryotic Cells 

Modelling signalling and regulatory networks is very challenging, due to the large number of 
molecules involved, the highly non-linear and dynamic behaviour often observed, and the difficulty 
to obtain quantitative measurements. Typically, models cover only one or two pathways, which are 
modelled using differential equations to describe the underlying biochemistry (Chen 2009). 
Recently, rule-based approaches have been developed as a means to deal with the inherent 
combinatorial complexity (Hlavacek et al. 2006). Novel experimental techniques such as protein 
arrays, bead-based systems (e.g Luminex) and mass spectrometry provide large amount of data 
about signalling processes. Therefore, it has become possible to probe larger signalling networks 
under multiple conditions. Additionally, prior knowledge information is becoming increasingly 
available in an integrated manner, thanks to efforts to unify pathways description (Biopax; 
www.biopax.org) and to create a common portal to access different databases 
(PathwayCommons; www.pathwaycommons.org/pc).  

With this large amount of data and network information, it is in principle possible to generate 
models of large signalling networks. However, to identify the exact network structure and the 
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kinetic parameters poses an enormous optimisation problem. Due to this, efforts so far have 
attempted to model these networks using simple formalisms such as Boolean or fuzzy logic (Morris 
et al. 2010). Such methods, however, only provide an extremely simplified description of the 
underlying biochemistry.  

The EMBL group has extensive expertise on modelling signalling networks, and the FTELE.IGM 
group on modelling regulatory networks. The EMBL group has developed a framework to model 
large signalling networks using discrete logic, embedded in the tool CellNetOptimizer (CellNOpt; 
Saez-Rodriguez et al. 2009), and is currently extending the approach for continuous, dynamical 
systems. The group also has experience in modelling signalling networks with biochemical 
formalisms. These different formalisms will provide suitable benchmarks for the methods for model 
selection and parameter estimation. We will use the NetBase platform to infer prior knowledge 
networks (in combination with available resources such as PathwayCommons). The resulting 
networks will be trained with CellNOpt using high-throughput proteomics data collected by 
collaborators of the EMBL group. 

We will focus on relevant signalling and regulatory networks, using data on cell lines that are 
commonly used in biotechnology as models to develop novel drug therapies, toxicity studies, etc. 
Furthermore, we will link these models to models of metabolism in cell lines, in particular, of the 
CHO cell line. Insilico Biotechnolgoy has developed a comprehensive kinetic model of metabolism 
in these cells, and we will collaborate on connecting these models. The models developed in this 
section can be used as in silico tools for the optimisation of biotechnological production processes 
(see Section 1.2.7 below). 

B 1.2.6 Application: Spatial Models of Gene Regulatory Networks in Development 

Today, a large majority of industrial biotechnological production processes are carried out in 
unicellular microbial systems. On the other hand, genetically engineered plant systems have a 
huge potential for biotechnological applications, such as the production of biofuels or bio-
degradable plastics. Similarly, genetic engineering in farm animals is of increasing economic 
importance. However, the genetic manipulation of complex, multi-cellular orga-nisms is still in its 
infancy, since our current methods of intervention are crude, and we lack a rigorous, quantitative 
understanding of the complex regulatory networks involved in animal or plant growth and 
physiology. Such understanding would allow more fine-tuned, well-adjusted, and more effective 
genetic engineering (and synthetic biology) in multi-cellular systems. In particular, it would enable 
us to express relevant transgenic factors at exactly those points in space and time at which they 
are required for a specific application. 

Gene networks acting during development in multi-cellular organisms pose special challenges for 
reverse-engineering and modelling. In contrast to the large-scale microbial and signalling networks 
considered so far, developmental and physiological processes usually only involve a moderate 
number of genes, but exhibit highly intricate spatial and temporal regulatory dynamics. The related 
optimisation problems are extremely complex, and provide a tough challenge for our global 
optimisation algorithms and related methods. 

It is for this reason that we include existing models of spatially distributed eukaryotic gene 
regulatory networks involved in development as test problems for our methods. They are ideally 
suited for this purpose. We will consider two particular cases of developmental systems as 
benchmark problems. Both are involved in pattern formation in early animal development. These 
systems are representative of many regulatory networks in biology: the insights gained from such 
an analysis, and the technical challenges posed by these systems, can be easily generalised. 

Our first choice of model system is early development of the fruit fly Drosophila melanogaster. The 
gene networks underlying pattern formation in Drosophila during the first few ours of 
embryogenesis are probably the best-studied developmental gene regulatory networks available at 
the moment. This allows us to rigorously compare modelling results with the high-resolution 
quantitative datasets of spatial gene expression patterns available for this system, which have 
already been used to infer the regulatory dynamics of pattern formation using a reverse-
engineering approach (Reinitz & Sharp, 1995; Jaeger et al., 2004a,b; Perkins et al., 2006; Manu et 
al., 2009a,b; Ashyraliyev et al. 2009b). 
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The CRG group has been extending this approach to a comparative analysis of network evolution. 
In particular, we have created quantitative datasets of spatial gene expression patterns for three 
species of dipterans (flies, midges and mosquitoes). These datasets form a unique platform for 
reverse-engineering and comparing pattern-forming networks between species. We will obtain 
models of segmentation gene expression based on different modelling formalisms using the 
modelling cycle (Fig. 1). Analysis of the resulting models will be used to identify similarities and 
differences in the dynamical behaviour of the system, which can explain commonalities and 
divergence of gene expression between species. Understanding how a gene regulatory network 
can be altered during evolution, will aid our understanding of how to engineer complex spatial 
networks in the future. 

We will also consider the starlet sea anemone (Nematostella vectensis) an emerging model 
system for the experimental study of development and evolution (Finnerty et al. 2004; Kusserow et 
al. 2005). The UvA group has developed quantification methods to measure spatial profiles of gene 
expression during early developmental stages of Nematostella and has been involved in 
developing models for pattern formation and morphogenesis in this species (Tamulonis et al. 
2011). Based on these pioneering efforts, we plan to use early Nematostella development as a test 
case for the inference and modelling of pattern-forming regulatory networks.  

Nematostella is more representative of many developmental processes in other animals than the 
fly systems described above: First, our knowledge, and hence the datasets used for model 
inference, are still much more preliminary and incomplete than in the case of Drosophila. 
Therefore, this system will test the ability of our methods to cope with noisy and uneven datasets. 
And second, early development of Nematostella occurs in cellularised tissues, involving cell 
movements and signalling between different tissues. It is therefore more representative and less 
derived than early dipteran development. 

B 1.2.7 Application: Production Processes in Industrial Biotechnology 

The application of data-driven mathematical models in industry for the improvement of 
biotechnology production processes has only just begun, and the regular use of modelling and 
optimisation software in the private biotechnology sector needs to be promoted. The use of such 
methods is often hampered by the absence of user-friendly, flexible and reliable software. Existing 
code often needs significant expert knowledge (both computational and scientific). In other words, 
end-users without extensive expertise in how to handle and compile code, and in modelling and 
optimisation, are excluded from the use of advanced algorithms and models, or simply need too 
much time to use and understand their functionality. Hence, there is a strong demand for user-
friendly software solutions implementing the iterative modelling cycle described above that can be 
used by non-experts and guide the design of efficient production processes. 

The main aim of this project is the development of user-friendly software to support the model-
building cycle. This will be achieved by a close interaction of academic partners (who are 
developing the algorithms), end-users (Insilico Biotechnolgy, INSIL and Fluxome SA, FS; who will 
be applying the software in a commercial biotechnological setting) and Complex Systems 
Modelling (CSM; who will be in charge of writing our integrated code framework). Users with 
different levels of expertise (experimental biologists, engineers, and bioinformaticians) will be 
employed to test our emerging software framework and to provide feedback on user-friendliness 
and functionality to the developers. We aim at establishing an efficient process of knowledge 
transfer for the academic partners to the biotechnology SMEs. 

The functionality of the software will be tested by application of models to various organisms used 
for the production of compounds of high industrial interest, including nutraceutical, ingredients, 
biopharmaceuticals, and fine chemicals. In particular, we will focus a) on the simulation of the 
production of nutraceutical ingredients such as resveratrol and polyunsaturated fatty acids using 
dynamic models of S. cerevisiae, b) on the simulation of therapeutic antibody production using 
dynamic models of Chinese Hamster Ovary (CHO) cells, and c) on the simulation of amino acid 
production using dynamic models of Escherichia coli. Simulation results are likely to lead to the 
identification of novel metabolic engineering and synthetic biology targets that can improve the 
production efficiency of the compounds under investigation. 
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Our second main aim in this part of the project is to go beyond the use of steady-state genome-
scale models that have recently been shown to give promising results for metabolic engineering 
i.e. in lycopene and ethanol production (Alper et al. 2005; Bro et al. 2006). These models do not 
yet include any regulatory or dynamic information, and simulation capabilities can become rapidly 
limiting. It is expected that our efforts will lead to dynamic models that will yield superior and more 
accurate simulation results. This would enable and boost the increasingly widespread use of such 
models in the design of biotechnological production processes. 

Such dynamic simulations capitalize on network models combining the interaction of metabolism, 
gene regulation and/or signalling processes. For the production of therapeutic antibodies using 
CHO cell cultures, for example, large-scale dynamic models will pave the way for predicting the 
impact of relevant process variables like pH and/or media composition on cell growth and 
productivity or regarding clinically important aspects of product quality, such as glycosylation 
patterns. Such predictions are notoriously difficult or unreliable using today's methods. 
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B 1.2.8 Summary: Progress Beyond the State-of-the-Art 

Objective and 
Application 

State of the Art Expected Outcome Performance 
Indicator 

Deliverables 

Integration and 
Exploitation of 
Databases 

Diverse and 
incompatible data 
sources for model 
building 

Unified database 
infrastructure 
(NetBase) 

Public availability 
of new 
integrated 
database online 
portal. 

D1.1 to 1.5 

Data Visualisation 
and Analysis 

Diverse tools not 
specifically designed 
for model-building 
cycle 

Integrated suite of 
tools tailored 
towards model 
building cycle. 

Public availability 
of tools as part 
of DataRail and 
software 
package to be 
developed by 
CSM. 

D2.1 to 2.3 

The Model-
Building Cycle 

Diverse tools, often 
incompatible with 
each other for model 
identification, fitting, 
analysis etc. 

Integrated suite of 
tools and newly 
developed/improved 
algorithms to 
support the entire 
model building 
cycle. 

Public availability 
of tools as part 
of the software 
package to be 
developed by 
CSM. 

D3.1 to 3.4 

Models of 
Microorganisms 
and Cell Lines 

Constraint-based, 
but no dynamical 
models of whole-cell 
metabolism and 
regulation 

Novel kinetic models 
of whole cell 
metabolism and 
regulation (E. coli, 
CHO cell line) 

Publications 
reporting 
modelling 
results; use of 
models for 
biotechnological 
production 
processes 

D4.1 to 4.6 

Models of 
Signaling 
Networks 

Dynamical models 
of specific signalling 
processes; not 
integrated among 
each other or with 
metabolic/regulatory 
models 

Dynamical models 
of signalling 
networks (e.g. in 
CHO cell line) 
integrated with 
metabolic and 
regulatory models. 

Publications 
reporting 
modelling 
results; use of 
models for 
biotechnological 
production 
processes 

D5.1 to 5.4 

Spatial Models of 
Developmental 
Gene Regulatory 
Networks 

Few, mostly 
qualitative 
dynamical models 

New models based 
on quantitative 
evidence; new tools 
to handle complex 
spatial models 

Publications 
reporting 
modelling results 

D6.1 to  6.2 

Models for 
Biotechnological 
Applications 

Few models used in 
optimising 
biotechnological 
production 
processes today 

Prototype models 
for optimising 
biotechnological 
production 
processes 

Availability of 
modelling 
platforms for 
SME partners 
and other 
interested 
companies 

D7.1 to 7.5 
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B 1.3 S/T Methodology and Associated Work Plan  

B 1.3.1 Overall Strategy of the Work Plan 

We have subdivided our work plan into work packages (WP) as follows:  

The three vertical objectives of the project (see section 1.1.7 and Fig. 3) are represented by WP1–
3. WP1 and 2 deal with tools/algorithms for data analysis and visualisation respectively. They are 
prerequisites for the application of the modelling cycle tools to be developed in WP3, which depend 
on the availability of data repositories to enable data-driven modelling, model validation, parameter 
estimation, uncertainty quantification and optimal experimental design. WP3 constitutes the very 
core of our project, involving all the academic partners, and one of the SMEs. WP3 specifically 
pools the expertise of the academic partners of the project to produce an integrated suite of 
methods and software tools for model identification, optimization, and analysis, as well as for 
optimal experimental design. Due to its integrative nature, it cannot be subdivided into smaller work 
packages. While it is large and ambitious, it is also highly feasible, and does not pose any major 
risks (see Section B1.3.4 below). WP1–3 will provide tools and methods, which will be tested using 
different biological and biotechnological applications in WP4–7. 

We want our methods and tools to be broadly applicable, and therefore require the widest possible 
range of test problems to ensure generality and robustness. The large variety and number of 
models that we intend to use as test cases is an essential feature of the project. These test cases 
can be subdivided into four areas of applications (Fig. 3), which are implemented in a separate 
work package each: WP4 deals with large-scale metabolic and gene regulatory network models for 
micro-organisms and cell lines. It is a prerequisite for WP7 (biotechnological applications), for 
which such models will be needed. WP5 deals with modelling cell-cell signalling cascades, and 
WP6 with developmental gene regulatory networks. The aim here is not to gain new insights into 
inter-cellular communication and animal development (although that would be a beneficial side 
effect of our efforts), but to expose our methods and tools to the unique challenges posed by 
complex, multi-scale, spatial models. Both of these applications introduce aspects of models (such 
as spatially distributed systems, and extremely heterogeneous sources of data), which are 
representative for many biotechnological, and in particular, many future synthetic biology 
applications. The most important work package in this objective is WP7. It implements the 
application of the methods developed in WP1–3 to biotechnological production processes and will 
provide a close collaboration between tool developers (academic partners) and users of these 
tools (SMEs). 

We dedicate separate work packages to complementary (but crucial) activities associated with the 
primary research effort of the consortium. The main aim of our project is to develop and implement 
novel methods for modelling and optimisation. WP8 will be concerned with the dissemination of 
these methods,  potential exploitation of project results as well as training. It is led by one of the 
SMEs (CSM) who will distribute our software and will provide maintenance and support to users 
and customers. WP8 covers not only the legal infrastructure for CSM to implement their code, but 
also includes activities such as presentations at scientific meetings and specialised biotechnology 
and bio-IT trade fairs. Additionally, it deals with the organization of workshops  and will be 
responsible for organising exchanges of researchers between the partners of the consortium. This 
will provide unique training opportunities to the young researchers involved, and will also facilitate 
the communication and information exchange between partners. 

Finally, we dedicate a separate work package (WP9) to the management of the project. It will 
ensure that legal requirements are met, that reports are delivered in a timely fashion, and that an 
efficient flow of information is established between the partners and the work packages. In 
addition, WP9 will be in charge of organising regular meetings of the steering committee, the 
general assembly, and the scientific workshops organised by the consortium. This work package 
will be implemented by the International Collaborations Office (ICO) at the CRG, which is 
dedicated to the management of European projects. 
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B 1.3.2 Timing of the Different WPs and their Components (Gantt Chart) 

  
Work Package 

Title 
  Deliverable Title Year 1 Year 2 Year 3 

WP1 
Database 
Integration & 
Exploitation 

1.1 Database Infrastructure                                                                         

1.2 Database/Tools Interface                                                                         

1.3 Integration Workflows                                                                         

1.4 Data Integration Tools                                                                         

1.5 Model Data File Editor                                                                         

WP2 
Visualisation Tools 
for Data & Model 
Building 

2.1 GPLVM Software                                                                         

2.2 
DataRail Visualisation 
Tools 

                                                                        

2.3 
Spatial Visualisation 
Tools 

                                                                        

WP3 

Integrated 
Software Tools for 
the Modelling 
Cycle 

3.1 Bayesian Inference Tools                                                                         

3.2 
Parameter Estimation 
Tools 

                                                                        

3.3 
Multi-objective 
Optimisation Tools 

                                                                        

3.4 Integrated Suite of Tools                                                                          

WP4 
Application: Large-
scale Models of 
Microorganisms 

4.1 
Reconstruction of E. coli 
metabolism 

                                                                        

4.2 
Genome-wide Kinetic 
Model of S. cervisiae 

                                                                        

4.3 
Reconstruction of CHO 
Cell Metabolism 

                                                                        

Each year is subdivided into 12 periods of one month. 
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Work Package 

Title 
  Deliverable Title Year 1 Year 2 Year 3 

WP4 
(ctnd.) 

Application: Large-
scale Models of 
Microorganisms 
(ctnd.) 

4.4 
Genome-wide Kinetic 
Model of E. coli 

                                                                        

4.5 
Gene Regulatory 
Network of E. coli 

                                                                        

4.6 
Combined 
Metabolic/Regulatory 
Model of E. coli 

                                                                        

WP5 

Application: 
Signalling & 
Regulatory 
Networks in Cells 

5.1 
Algorithms for Integration 
of Signalling Data 

                                                                        

5.2 
Reconstruction of CHO 
Signalling Networks 

                                                                        

5.3 
Kinetic Models of CHO 
Signalling Networks 

                                                                        

5.4 
Integrated 
Signalling/Metabolic 
Models (CHO) 

                                                                        

WP6 

Application: 
Developmental 
Gene Regulatory 
Networks in 
Animals 

6.1 
Datasets for Spatial 
Gene Expression 

                                                                        

6.2 
Animal Regul. Network 
Models 

                                                                        

WP7 

Application: 
Biotechnological 

Production 
Processes 

7.1 
Specifications for 
Software Functionality & 
GUI 

                                                                        

7.2 
Prototype Software for 
Testing 

                                                                        

7.3 
Models: Biotechnological 
Production Processes 

                                                                        

7.4 
Comparative Analysis of 
Producer Strains 

                                                                        

7.5 
Target Identification for 
Process Optimisation 

                                                                        

Each year is subdivided into 12 periods of one month. 
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Work Package 

Title 
  Deliverable Title Year 1 Year 2 Year 3 

WP8 
 

Dissemination, 
Technology 
Transfer & 
Training 
 

8.1 Project Website                                                                         

8.2 
Software 
Development/Testing 
Architecture 

                                                                        

8.3 Integrate Software Suite                                                                         

8.4 
Talks/Demo Stalls at 
Meetings 

                                                                        

8.5 
Manuscripts on Software 
Suite/Tools 

                                                                        

8.6 
Project Internal 
Workshop  

                                                                        

8.7 External Workshop                                                                         

8.8 COPASI workshop                                                                         

8.9 
Researcher Exchange 
Visits between Partners 

                                                                        

WP9 
Project 
Management 

9.1 Consortium Agreement                                                                         

9.2 Quality Assurance Plan                                                                         

9.3 Kick-off Meeting                                                                         

9.4 
1st short scientific 6-
months report 

                                    

9.5 1st Annual Meeting                                                                         

9.6 
2nd Short scientific 6-
months report 

                                    

9.7 
1st Periodic Activity and 
Management Report 

                                                                        

9.8 Mid-term review                                     

9.9 2nd Annual Meeting                                                                         

9.10 
3rd Short scientific 6-
months report 
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9.11 
4th Short scientific 6-
months report 

                                    

9.12 Final Meeting                                                                         

9.13 
Final Activity & 
Management Reports 

                                                                        

Each year is subdivided into 12 periods of one month. 
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B 1.3.3 Graphical Presentation of the Components Showing Their Inter-dependencies  

 

Figure 6: Work Packages of BioPreDyn and their Interdependencies. WP1–3 focus on method 
development (vertical objectives) while WP4–7 deal with the application of these methods to different 
biological and biotechnological benchmark problems. WP8 is concerning with dissemination of 
results/products and training. Management of the entire project is the concern of WP9. 

B 1.3.4  Significant Risks, and Associated Contingency Plans. 

Work Packages 1 & 2 (WP1 & WP2): 

We do not foresee any major risks for these work packages—mainly concerned with software 
design and data integration—due to the well-established methodologies we will use to develop the 
relational database as well as the query and visualisation tools. The main challenge relating to 
WP2 (visualisation) is the large-scale and diverse nature of the data. For risks associated with 
integrating large amounts of code from diverse sources (D1.4, D2.3) see WP8. 

Work Package 3 (WP3): 

This work package is large and ambitious, but poses no major risks. There is always some 
probability of failure associated with developing novel numerical methods for non-linear modelling 
and optimisation. Our project includes a large number of the research groups at the forefront of 
optimization research in Europe. However, the synergistic and complementary expertise that we 
accumulate within our consortium will ensure that algorithm development will be up to the most 
stringent quality standards possible, and will enable novel combinations and algorithmic 
developments that are impossible to anticipate. D3.1 will start by considering the most tractable 
models, and methods will be extended and refined stepwise to deal with more challenging models 
based on non-linear differential equations and probabilistic frameworks, as well as with multi-
objective optimisation (D3.2 and D3.3). Only practical implementation and application can show 
which novel methods will work, and which ones will not. WP3 creates a unique environment in 
which such failures can be analyzed using the most up-to-date know-how, which will enable us to 
work around such difficulties in a manner, which could not be achieved by any single research 
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group alone. We will pay particular attention to scalability issues, and high-performance computing 
will be used to keep them under control. Issues with parameter identifiability will be addressed from 
a practical point of view with suitable nonparametric statistical tools. For risks associated with 
large-scale coding projects (D3.4) see WP8. 

Work Package 4 (WP4): 

D4.1 relies on published work, and is therefore of low risk. D4.2 and D4.4 involve the inference of a 
large number of parameters based on existing data. This task will be informed by the 
methodologies developed in WP3 and we do not expect there to be any major issues. If our 
reverse-engineering methods fail, we can apply alternative reverse-engineering methods available 
from the literature. D4.3 is quite similar to D4.1. It is feasible since partner INSIL already have a 
CHO cell metabolism map. However, it involves a slightly higher risk of failure than D4.1 because 
mammalian cells have a more complex metabolism than S. cerevisiae. D4.6 is the most risky 
activity of this work package. We may be unable to construct the large kinetic model required for 
such an integrated reconstruction of a cell. This may be due to lack of data: if we are unable to 
obtain enough data to constrain the model, we will proceed with an reduced model based on flux 
distribution (i.e. containing a smaller number of pathways, those that carry most of the flux); such a 
model would still be of value in biotechnological applications.  

Work Package 5 (WP5): 

D5.1 is low-risk: it relies on previous work of partners and other groups on data integration. The 
technological requirements for D5.2 and D5.3 are provided by WP1–3. Potential bottlenecks 
include the availability of data on signalling and regulatory processes in CHO cells. If available data 
re not sufficient to construct models, we will utilise data from related cell types, to create a model 
resembling CHO cells as closely as possible. Finally, D5.4. is a very challenging deliverable; if a 
fully integrated model of metabolic, signalling, and regulatory networks is not achieved, we are 
confident to provide at  least specific models for the different regulatory scales and processes. 

Work Package 6 (WP6): 

It is notoriously difficult to standardise spatial gene expression data (D6.1), due to difficulties in 
comparing developmental stages and types of tissues across species. However, this is not a 
serious problem for our experimental systems, since dipteran (fly) embryos are morphologically 
very similar, while outside the dipteran system we can fall back on qualitative comparisons should 
more rigorous standardisation efforts fail. For D6.2, we do not foresee any major risks for modelling 
pattern formation in flies, since a proof-of-principle that reverse engineering in this system works is 
already available (unpublished). In Nematostella, the major risk is that the available data may not 
be sufficient to constrain the fitting problem, and we may not be able to obtain unique solutions for 
our fits. This will provide a challenge for algorithms concerned with parameter identifiability and 
optimal experimental design from WP3, which are designed to address such problems. 

Work Package 7 (WP7): 
Metabolic target identification (D7.5) can be challenging and thorough model validation needs to be 
conducted using known established targets. Furthermore, the aim of WP7 is to establish novel 
targets for improvement of biotechnology production processes. Here it is essential that sufficient 
experimental data is available. Should this not be the case, FS is willing to generate data outside 
BioPreDyn in order to have sufficient data available for simulation. 

Work Packages 8 (WP8): 

While dissemination and exploitation of results does not require risk assessment, this package also 
contains deliverables based on large-scale coding projects (D8.2, D8.3). The tasks underlying 
these deliverables are designed to handle the complexities of such efforts. Collaborative coding 
practices and version control will be ensured by a SVN server to which all partners will have 
access. Furthermore, automatic code-building and -testing tools (cmake.org) with web-based 
reporting (cdash.org) will be set up. The code integration part of this project will be co-ordinated by 
CSM whose personnel has ample experience with such large-scale collaborative coding projects. 

Work Packages 9 (WP9): 
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Risk assessment is not necessary for this work package since it does  not deal with research- and 
technology-related aspects. For management procedures see section 2.1. 

B2. Implementation 

B 2.1 Management Structure and Procedures  

BioPreDyn is a multidisciplinary project that brings together eight academic institutions and three 
SMEs in seven different European countries. Due to the complexity and interdisciplinary/sectorial 
nature of the project (and due to the fact that in basic research events can sometimes take 
unexpected turns), we will establish effective management structures and procedures from the 
very beginning. Our management strategy will allow continuous monitoring of the project, taking 
timely corrective actions whenever needed, sharing resources and technologies for a synergistic 
outcome, and protecting, publishing, and utilising the knowledge generated. All the partners will 
agree on management structures and procedures, which will be illustrated in detail in the 
Consortium Agreement. 

2.1.1 Management structure 

Fig. 7 illustrates the management structure of BioPreDyn, including the main players and their 
relationships. 

 

Figure 7: Management Structure of BioPreDyn 

Scientific Co-ordinators 

Dr. Banga and Dr. Jaeger will take charge, in a synergistic fashion, of the scientific co-ordination of 
the project. Dr. Banga will mainly supervise the activities related to tool/algorithm development and 
Dr. Jaeger will mainly supervise the activities related to their applications in research and 
biotechnology. Their role includes acting as intermediary between the consortium and the 
European Commission (EC), as well as chairing the Project Steering Committee and the General 
Assembly. They will interact weekly with the Project Manager (PM) to ensure the success of the 
project within its defined budget and time-period. 
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Neither Dr. Banga nor Dr. Jaeger has previous experience with co-ordinating European Framework 
programs. However, both of them have been involved in European projects as partners 
(Dr. Banga: 7 projects, 3 of them in the field of systems biology; Dr. Jaeger: 2 projects, both 
sponsored by the EraNet initiative, concerned with optimisation and modelling), and they will be 
supported by the CRG International Collaboration Office (ICO; see next section) in their role as 
project co-ordinators. 

Project Management (PM) Team 

Management activities will be performed by the CRG. A dedicated project manager with suitable 
administrative skills as well as scientific background will be hired to manage BioPreDyn 
successfully, and provide day-by-day assistance to the scientific co-ordinators and the partners. 
The project manager will be incorporated into the CRG International Collaboration Office (ICO; 
headed by Dr. Michela Bertero), which has long-standing and extensive experience in successful 
management of European collaborative projects (both FP6 and FP7). The ICO works in tight 
collaboration with the CRG Research, Legal, Communication and Technology Transfer Offices. 
Apart from assisting the Scientific Co-ordinators, the project manager will be responsible for the 
following tasks: 

 preparation of the Consortium Agreement, 

 co-ordination of all contractual issues, 

 preparation and timely submission of deliverables, reports and financial statements, 

 monitoring of budget use, and distribution of funds to the partners, 

 streamline communication flows within the consortium, as well as with the external scientific 
community and the general public, 

 provide support for the organisation of project meetings, workshops, phone conferences, 
and other events, 

 supervise gender and ethical issues, 

 oversee and support the activities of the different project committees. 

Project Steering Committee (PSC) 

The PSC will be formed by the eight leaders of work packages 1–8, and will be chaired by the two 
scientific co-ordinators (Drs. Jaeger and Banga). Meetings (via conference call or face-to-face) will 
be held on a regular basis every 3 months. The PSC will have the following tasks: 

 strategic decisions concerning the scientific and technological activities and 
allocation/distribution of funds, 

 ensuring that there is an effective communication flow between partners and between the 
consortium and the EC, 

 resolving conflicts among partners and project committees,  

 preparing topics of discussions for the General Assembly (GA), 

 implementing technical and scientific details of the work plan, taking into account 
recommendations of the EC, the Scientific Advisory Board (SAB) and other project 
committees. 

Work Package Leaders 

Each work package (WP) will be supervised by one leader, as agreed during the preparation of this 
proposal. His/her responsibilities will include: 

 supervision of the scientific and technological activities within the assigned work package, 
including identification of potential bottlenecks, 

 reporting to the PSC and the co-ordinators. 

General Assembly (GA) 

The GA is the ultimate decision-making body of the consortium. It will be composed of one 
representative from each partner to ensure that all views are represented in the decision-making 
process. The GA will meet at least once a year during the Annual Meetings, but extraordinary 
meetings may be convened by the PSC or the co-ordinators to address specific issues. 
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The GA will be chaired by the two co-ordinators and decide on all fundamental decisions for the 
project implementation such as: 

 implementing changes in the overall project work plan, introducing new partners and re-
allocation of tasks and budget, 

 resolving conflicts, which could not be settled by the PSC, 

 taking actions to be taken with regard to a defaulting party, 

 deciding on changes to the Consortium Agreement. 

Innovation Board (IB) 
The IB will be appointed at the kick-off meeting and will be central to the dedicated work package 
activities. Members of the IB will include representatives from all three SMEs, experts in 
technology transfer from partner institutes, and experts in software licensing. The IB‘s main tasks 
will include:  

 evaluate the licenses linked to background software and databases to ensure that 
foreground software and databases to be developed are free of unwanted restrictions for 
the final aims of use, distribution and exploitation, 

 indentify discoveries and inventions with commercial potential, 

 provide consultancy to the partners on the feasibility and the procedure for protecting and 
exploiting the knowledge generated by the project, 

 help seek (where necessary) industrial partners for further commercialization, 

 assist in the stipulation of confidentiality and understanding agreements with external 
partners, and 

 mentor BioPreDyn researchers to broaden their career perspectives in the private sector. 

Scientific Advisory Board (SAB) 

A Scientific Advisory Board will be appointed at the kick-off meeting and will have the aim to 
assess the progress and quality of the work carried out by the consortium, and further to provide 
advice on the scientific directions of BioPreDyn. The SAB will be invited to the Annual Meetings 
and will receive Annual and Interim Reports in advance. It will be composed of renowned scientists 
from academic institutions and industry. 

Very high-profile scientists (such as Hiroaki Kitano, Francis Doyle, Roel van Driel, Nicolas le 
Novère, and Victor de Lorenzo) have already agreed to serve on the SAB if the project is positively 
evaluated. 

2.1.2 Management procedures  

The following management procedures will provide the adequate framework for an efficient and 
smooth implementation of the project. 

Consortium Agreement 

The consortium members will negotiate, agree and sign a Consortium Agreement before the start 
of the project based on the DESCA model contract. The Consortium Agreement will regulate 
issues related to management structure and procedures, quality control, communication, financial 
and legal aspects, decision-making and conflict resolution mechanisms, risk management, 
management of intellectual property, etc as summarized in the following paragraphs. 

Quality Assurance 

A crucial element of the management procedure of BioPreDyn will be a straightforward quality 
control system. The co-ordinators will be responsible for the production of the Quality Assurance 
Plan, which will include guidelines and references for good practices and whose implementation 
will be the joint responsibility of all partners. Quality needs to be controlled mostly at three levels: 
1) generation of new software tools; 2) increasing interpretative and predictive capacity of data 
generated; and 3) testing and application of computational models generated during the project. 
The WP leaders will be responsible for quality control and, together with the PSC, to identify 
promptly any risk, delay or other factors that might affect the work plan.  

Communication Management 
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The PM team will set up effective tools for the efficient and transparent flow of communication 
among project partners. These tools include mailing lists, website and intranet, phone conferences, 
interim reports and newsletters. The following mailing lists will be set up: a general mailing list for 
all consortium members, specific mailing lists for the steering committee, administrative issues, 
and others whenever needed. In addition to the public part for visibility of the project (see section 
3.2 for further details), the webpage will host a secured intranet dedicated to deposit reports and 
contractual documents, to host a forum, and to exchange scientific material. Phone conferences 
will be organized every 3 months with PSC members or upon request. In addition to the official 
reports to the EC, short interim reports will be prepared and shared with all partners every 6 
months. These reports will allow monitoring as well as sharing results among the consortium 
members. A BioPreDyn Newsletter will be edited and distributed regularly to highlight major 
project achievements, news and upcoming project meetings or events. 

Furthermore, the communication flow will be facilitated by attendance to project meetings (annual 
project meetings and/or smaller meetings involving subprojects or specific WPs) and other related 
events (scientific conferences, training activities, workshops, etc).  

Financial and Legal Management/Official Reporting 

The PM team, with support of the CRG Financial Office, will be responsible for receiving the 
payments from the EC and distributing the funds to the partners according to the agreed budget 
shares. The financial management also involves: monitoring budget expenditures by the partners 
to ensure the appropriate use of resources, suggesting correction measures whenever applicable, 
and providing support to consortium members in all aspects related to financial issues, including 
financial audits and reports. Additionally, the PM team will make sure that all legal requirements 
derived from the grant agreement and consortium agreement are understood by the partners and 
fulfilled by the consortium. 

The co-ordinators and the PM team will be the link between the Consortium and the EC Project 
Officer in charge of the project and will ensure official reporting (including deliverables) to the EC, 
according to the timing established in the Grant Agreement and Annex I. 

Decision-Making Structure, Conflict Resolution and Risk Management 

The decision-making structure for BioPreDyn has two levels: the General Assembly (GA) and 
the Project Steering Committee (PSC). Decisions will be made by the GA or PSC according to the 
responsibilities set out in the Consortium Agreement and briefly described in Section 2.1.1. All 
partners will appoint one representative and one deputy to the GA. Each member of the GA will 
have one vote. Decisions will ideally be made on the basis of consensus. If consensus cannot be 
achieved, they will be made on the basis of a majority vote with the co-ordinators having a casting 
vote. A quorum of 2/3 of the partners should be present or represented at the meeting. 

The partners commit themselves to resolve any conflict amicably and as speedily as possible. 
Potential conflicts should be identified, analysed and resolved at the lowest level first (WP level). If 
the conflict cannot be solved at these levels between the partners concerned, the PSC will have 
both the responsibility and authority for conflict resolution as will be clearly defined in the 
Consortium Agreement. 

Technical and scientific risks have been indentified in each work package (see section 1.3v). A 
procedure for risk management will be set out in the Consortium Agreement. Following this 
procedure, partners will be responsible for reporting (to the WP leaders, the PSC or the co-
ordinators) any risks that might occur during the project lifetime and that might affect the successful 
completion of the project objectives. Depending on the risks identified and their impact on the 
project, the PSC or GA might be responsible to take corrective actions. 

Management of Intellectual Property (IP) 

The project will likely produce IP that is of significant value for the scientific community as well as 
for industrial partners (not restricted to the ones in the project). The project will maintain high 
awareness of opportunities to protect and exploit IP of potential commercial value, through a 
dedicated work package (WP8) and the establishment of the Innovation Board (IB). At the very 
beginning of the project, the IB will be in charge of assessing the status of existing licenses for 
each background software to be used in the project, and of evaluating and proposing concrete 
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licensing strategies for the shared code to be developed during this project. Management of IP will 
be extensively described in the Consortium Agreement, which will be signed at the beginning of the 
project by all partners (see also section 3.2). 
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B 2.2 Beneficiaries 

Partner 1: CRG 

Description: 

The Centre for Genomic Regulation (CRG) is an emerging first-class research centre 
created in 2000 by the Catalan government and the University Pompeu Fabra (UPF) in 
Barcelona. The CRG‘s aim is to promote research excellence in biology and biomedicine. It 
provides an interdisciplinary and dynamic environment, in which researchers tackle a wide 
range of fundamental problems using ‗omics‘ and systems-level approaches. The applicant's 
laboratory is part of the EMBL/CRG Research Unit in Systems Biology (Co-ordinator: Dr. 
Luis Serrano), a joint programme between the CRG and the European Molecular Biology 
Laboratory (EMBL). The CRG has extensive experience in co-ordinating European research 
projects, demonstrated by the fact that it is currently in charge of managing 4 such grants, 
and has previously co-ordinated 3 more projects under FP6. 

Role in the Project: 

Data integration and visualisation; parameter estimation, global optimisation algorithms; 
application: developmental gene regulatory networks in dipteran insects. 

Expertise:  

Our group is applying a reverse-engineering approach to the study of network evolution. We 
focus on the investigation of pattern-forming networks active during development of dipteran 
insects (flies, midges and mosquitoes). Our main model system—the gap gene network in-
volved in segment determination during early development—will serve as one of the test 
cases for the reverse-engineering methods during this project. It is an ideal network to study 
in this context, since it represents a typical developmental gene regulatory network with a 
moderate number of components, but high spatial and temporal regulatory complexity. 
Comprehensive, quantitative datasets of spatial gap gene expression patterns are available. 
Our group has extensive expertise in data acquisition/quantification, global non-linear 
optimisation, and data/model analysis by means of graphical and numerical methods. 

Selected recent publications (3 max): 

Jostins L & Jaeger J (2010). Reverse engineering a gene network using an asynchronous 
parallel evolution strategy. BMC Syst Biol 4:17. 

Ashyraliyev M, Siggens K, Janssens H, Blom J, Akam M & Jaeger J. Gene Circuit Analysis 
of the Terminal Gap Gene huckebein. PLoS Comp Biol 5: e10000548. 

Jaeger J, Surkova S, Blagov M, Janssens H, Kosman D, Kozlov KN, Manu, Myasnikova E, 
Vanario-Alonso CE, Samsonova M, Sharp DH & Reinitz J (2004). Dynamic control of 
positional information in the early Drosophila blastoderm. Nature 430: 368–71. 

Key Personnel:  

Dr. Johannes Jaeger (PI) is a developmental geneticist, who has been trained in modelling 
and reverse-engineering during his MSc (with Prof. Brian Goodwin, 2000) and PhD (with 
Prof. John Reinitz, 2006). During his post-doc at the University Museum of Zoology in 
Cambridge (UK, supervisor: Prof. Michael Akam), and his time as a group leader at the 
CRG (from Oct, 2008), he has been applying quantitative, data-driven modelling approaches 
to the study of the developmental and evolutionary dynamics of gene regulatory networks. 

Dr. Anton Crombach (post-doc) is a computer scientist by training, who did a PhD in the field  
of in silico evolution (with Prof. Paulien Hogeweg, Utrecht, NL). He is currently carrying out 
modelling/parameter estimation for gene network models, and evolutionary simulations. 

Damjan Cicin-Sain is our group‘s programmer. He implements image processing and data-
base tools, as well as high-performance code for model optimisation. 

A post-doc, to be hired on this project, will be carrying out systematic comparisons of optimi-
sation algorithms and modelling frameworks applied to the problem of pattern formation in 
early fly embryos.  
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Partner 2: CSIC 

Description: 

The Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC) is an autono-
mous, multi-disciplinary public research body affiliated to the Spanish Government. CSIC is 
the largest public research body in Spain, with its own legal structure and is represented 
throughout the Spanish territory with a total of 126 centres/institutes. The team participating 
in this project, the Bio-Process Engineering Group, is located at the Instituto de 
Investigaciones Marinas (IIM-CSIC) in Vigo, in the North-West of Spain. CSIC has 
considerable experience in both participating and managing R&D projects and training 
grants. Under the 7th Framework Programme, the CSIC has signed 129 actions (18 co-
ordinated by the CSIC). The CSIC has been the 5th organisation in Europe in project 
execution and funding in the 6th Framework Programme. 

Role in the Project: 

Parameter estimation, global optimisation algorithms; model reduction, model selection and 
discrimination; parameter identifiability analysis; optimal experimental design. 

Expertise:  

The Bio-Process Engineering Group has strong expertise in dynamic modelling of biological 
systems, with emphasis on (i) robust parameter estimation of nonlinear dynamic models, 
and optimal experimental design, (ii) optimisation (local, global; single and multi-objective) 
and optimal control of bio-systems, (iii) model-based control, including robust and non-linear 
model predictive control (iv) sensitivity and identifiability analysis. 

Selected recent publications (3 max): 

Ross J, Villaverde AF, Banga JR, Vazquez S, Moran F (2010) A generalized Fisher 
equation and its utility in chemical kinetics. Proc Natl Acad Sci USA 107: 12777–81; 

Balsa-Canto E, Alonso AA & Banga JR (2010). An iterative identification procedure for 
dynamic modeling of biochemical networks. BMC Syst Biol 4:11.  

Banga JR & Balsa-Canto E (2008). Parameter estimation and optimal experimental design. 
Essays in Biochemistry 45:195–210. 

Key Personnel:  

Presently, the research activities of the Bio-Process Engineering Group are carried out by 
15 persons: 3 permanent (tenured) scientists (Prof. Julio R. Banga, Dr. Antonio A. Alonso 
and Dr. Eva Balsa-Canto), plus a group of 7 PhD students and 5 post-docs. 

Julio R. Banga is currently Research Professor of CSIC and leader of the BioProcess 
Engineering Group. He obtained a Ph.D. in Chemical Engineering from the University of 
Santiago de Compostela in 1991. During 1992, he was a post-doc at the University of 
California, Davis (USA), and after that he spent three years as Assist. Prof. of Chemical 
Engineering at the University of Vigo, Spain. During those years, he also spent periods as 
visiting researcher at the University of Pennsylvania and at the M.I.T. (USA). Since 1996, he 
is a tenured researcher at CSIC.  

His main research topic is the application of mathematical modelling and optimisation to 
biological processes and systems, with applications targeting the areas of bioprocess 
engineering and systems biology. He has supervised over ten PhD students. He is the 
author of more than 110 archival publications, and has been involved in over 40 major 
research projects and contracts, including 4 EU projects in the area of systems biology. 
Currently, he is a member of the Editorial Board of BMC Systems Biology, a member of the 
IFAC Technical Committee on Control of Biotechnological Processes, and a member of 
several European external advisory boards. Dr Antonio A. Alonso is specialised in the 
analysis and control of nonlinear dynamic systems, with many applications in the bio-
systems area (over 70 research papers). Dr. Balsa-Canto is an expert in systems 
identification and identifiability analysis. 
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Partner: EMBL 

Description: 

The European Molecular Biology Laboratory (EMBL) is a molecular biology research 
institution supported by 20 European countries and Australia as associate member state. 
The headquarters of EMBL are in Heidelberg, Germany. The team participating in this 
project, the Systems Biomedicine Group, is based at the European Bioinformatics Institute 
(EBI), an EMBL-outstation located at the Wellcome Trust Genome Campus, Hinxton, near 
Cambridge. EBI can be considered the European centre for globally co-ordinated efforts to 
collect and disseminate biological data (e.g. EMBL Nucleotide Sequence Database, UniProt, 
ArrayExpress, Ensembl, InterPro and BioModels) and over 180 other resources. As of 
March 2010 at the campus data centre, there are more than 8,000 cores of high perfor-
mance computing in total and more than 7 Petabytes of raw disk. EBI provides state-of-the-
art services to allow researchers to understand not only the molecular components that go 
towards constructing an organism, but how these parts combine to create systems. In 
addition, EMBL-EBI provides extensive scientific training for users of its services (e.g. 280 
unique training-related events during 2008–2009).  

Role in the Project: 

Tools and methods to link models to experimental data; integration with data and network 
databases; modelling based on logical formalisms; applications to signalling networks. 

Expertise:  

The Systems Biomedicine Group has strong expertise in modelling signal transduction 
networks using logic formalisms and high-throughput proteomics data. The group develop 
methods and tools to leverage prior knowledge on biological networks from public sources 
with dedicated experimental data.  

Selected recent publications (3 max): 

Alexopoulos LG*, Saez-Rodriguez J*, Cosgrove B, Lauffenburger DA & Sorger PK (2010). 
Networks inferred from biochemical data reveal profound differences in TLR and 
inflammatory signaling between normal and transformed hepatocytes. 
Mol Cell Proteomics 9: 1849. 

Saez-Rodriguez J*, Alexopoulos LG*, Epperlein J, Samaga R, Lauffenburger DA, Klamt S & 
Sorger PK (2009). Discrete logic modeling as a means to link protein signaling networks 
with functional analysis of mammalian signal transduction. Mol Syst Biol 5: 331. 

Saez-Rodriguez J*, Goldsipe A*, Muhlich J, Alexopoulos LG, Millard B, Lauffenburger DA, 
Sorger PK (2008). Flexible informatics for linking experimental data to mathematical models 
via DataRail. Bioinformatics 24:840–7. 

[* denotes equal contribution] 

Key Personnel:  

Presently, the group consists of Julio Saez-Rodriguez (Principal Investigator), Jerry Wu 
(scientific programmer), and two post-doctoral fellows and one PhD student. 

Julio Saez-Rodriguez studied Chemical Engineering in the Universities of Oviedo and 
Stuttgart (1996-2001, with distinctions from the Spanish Government), and performed his 
graduate studies at the Max-Planck-Institute for Dynamics of Complex Technical Systems 
(2002-2007); his PhD was awarded the MTZ-Award for the best Dissertation in Medical 
Systems Biology. From 2007 to 2010 he was a post-doctoral fellow at Harvard Medical 
School and M.I.T., in a project funded by Pfizer. He is since July 2010 a group leader at 
EMBL-EBI, with a joint appointment at the Genome Biology Unit in EMBL-Heidelberg, and a 
senior fellow in Wolfson College. He is also the co-organizer of the DREAM (Dialogues in 
Reverse Engineering assessment of methods) initiative. He has co-authored 22 papers in 
peer-reviewed international journals. 
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Partner 4: UvA 

Description: 

The Computational Science Group at the Universiteit van Amsterdam (UvA) seeks to 
discover, through modelling and simulation, the way distributed information is being 
processed in complex systems. We focus on theory, applications, and problem-solving 
environments. We address issues of how physical and biological problems can be 
formulated in this framework and how they can be mapped onto distributed computer 
architectures and grid systems. The applicability of this approach is validated through the 
development of high-performance distributed problem-solving environments for 
asynchronous natural processes. The group is proactive with respect to e-Science virtual 
laboratories. Its work has strong theoretical foundations together with tight couplings to 
biological applications. UvA has extensive experience in (the management of) EU 
Framework projects, including HPCNET, CrossGrid, ACGT, Morphex, COAST, ViroLab, 
QosCosGrid, MeDDiCa, and MAPPER among others. 

Role in the Project: 

Modelling gene regulatory networks, cell-based modelling, modelling and simulation of 
morphogenesis, optimisation algorithms, multi-objective optimisation. 

Expertise:  

Our group has long-standing experience in high-performance computing, scientific visuali-
sation, modelling and simulation in computational biology, bio-medical applications and 
physics. Within computational biology we do research at a range of different levels of 
organisation (genome-gene regulatory networks-cells-tissue-organism). We work on 
modelling and analysis of gene regulation in cnidarians (corals and Nematostella vectensis), 
sponges, yeast and Drosophila. We do research on bio-mineralisation in corals and sponges 
(experimental and modelling work). We are working on growth and form of corals and the 
influence of light and hydrodynamics on the morphological plasticity and calcification in 
basal organisms (sponges and corals). This work is a combination of modelling work, a 
genetic comparison between different growth forms, phylogenetics, morphometrics of three-
dimensional growth forms obtained from CT scans and experimental work. 

Selected recent publications (3 max): 

Fomekong Nanfack Y, Kaandorp JA & Blom JG (2007). Efficient parameter estimation for 
spatio-temporal models of pattern formation: Case study of Drosophila melanogaster. 
Bioinformatics 23, 3356-63. 

Fomekong Nanfack Y, Postma M & Kaandorp JA (2009). Inferring Drosophila gap gene 
regulatory network: a parameter sensitivity and perturbation analysis. BMC Syst Biol 3: 94. 

Tamulonis C, Postma M, Marlow H, Magie C, de Jong J & Kaandorp JA (2010). 
Morphometrics and Modeling of Gastrulation in the cnidarian Nematostella vectensis Dev 
Biol (in press). 

Key Personnel:  

Dr. J.A. Kaandorp received his MSc in biology and a PhD in computer science and 
mathematics, both from the University of Amsterdam. Currently he has a permanent position 
as an associate professor at the Section Computational Science of the Faculty of Science of 
the University of Amsterdam. He runs a group of 2 MSc ,10 Phd students and 2 post-docs. 
The group is doing research at a range of different levels of organisation (genome-gene 
regulatory networks, cells- tissue-organism). 

Dr. Carolina Cronemberger (post-doc) is a physicist by training and is currently working on 
modelling simulation of gene regulation, physiology  and bio-mineralisation in cnidarians 

Daniel Botman is trained as chemist and is doing his PhD on modelling of gene regulation of 
Nematostella vectensis 

A post-doc to be hired will work on optimisation algorithms and modelling pattern formation 
in Nematostella development using high performance computing techniques 
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Partner 5: CWI 

Description: 

The Centrum Wiskunde & Informatica (CWI) is the Dutch national research institute for 
Mathematics and Computer Science. CWI is a private, non-profit organisation. Founded in 
1946 (as Mathematisch Centrum), CWI aims at fostering mathematics and computer 
science research in The Netherlands. CWI receives a subsidy from the Netherlands 
Organization for Scientific Research NWO, amounting to about 70% of the institute's total 
income. The remaining 30% is obtained through national research programmes, 
international programmes and contract research commissioned by industry. CWI's mission 
is twofold: to perform frontier research in mathematics and computer science, and to 
transfer new knowledge in these fields to society in general and trade and industry in 
particular. The institute's strategy is currently inspired by four broad, societally relevant 
themes, a.o. Earth & Life Sciences. 

CWI has always been very successful in securing a considerable participation in European 
research programs (ESPRIT, ACTS, TELEMATICS, BRITE, TMR, IST and others) and has 
extensive experience in managing these international collaborative research efforts. 

Participating group: Scientific Computing for Systems Biology. 

Role in the Project: 

multi-scale modelling (ODE/DDE/PDE, stochastic CME/RDME/queuing theory models + 
verification (numerical analysis)); system identification (identifiability analysis, parameter 
estimation, global and local optimisation), model discrimination and optimal experimental 
design; resampling strategies/validation; uncertainty quantification; high performance 
computing (incl. GPU). 

Expertise:  

The group has strong expertise in scientific computing, in the last 8 years applied within 
systems biology. Emphasis lies in particular on: (i) multi-scale modelling: macroscopic 
ODE/DDE/PDE, mesoscopic CME/RDME/queueing theory models. Model assumptions, 
model building, implementation on various platforms and verification (numerical analysis). 
(ii) system identification: optimisation (local, global), optimisation measures, parameter 
estimation, model discrimination and optimal experimental design. 

Selected recent publications (3 max) 

Blom J & Mandies M (2011). Traffic generated by a semi-Markov additive process. Prob Eng 
Inf Sci 25: 1. 

Ashyraliyev M, Fomekong-Nanfack Y, Kaandorp JA & Blom JG (2009). Systems bioloy: 
parameter estimation for biochemical models. FEBS J 276: 886–902. 

Dobrzyński M, Vidal Rodriguez J, Kaandorp J & Blom J (2007). Computational methods for 
diffusion-influenced biochemical reactions. Bioinformatics 23:1969-77. 

Key Personnel:  

Joke Blom is a principal investigator and group coordinator at CWI in the Life Sciences 
group and is affiliated with the NISB (Netherlands Institute for Systems Biology). She is a 
mathematician by training. Her main research topic is scientific computing, in particular 
modelling (deterministic and probabilistic), numerical analysis, optimisation and model 
identification. 

The postdoc to be hired will work on the (integration of the) modelling cycle with focus on 
system analysis (model validation and uncertainty quantification) and system identification. 
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Partner 6: FTELE.IGM 

Description: 

The Telethon Institute of Genetics and Medicine (FTELE.IGM) is an international reference 
centre for research on genetic diseases. It was created in 1994 by the Telethon Foundation, 
one of Italy‘s major non-profit organizations, to promote the advancement of research aimed 
at the diagnosis, prevention and cure of human genetic diseases. FTELE.IGM‘s mission is 
to understand the mechanisms of genetic diseases and to develop therapeutic and 
preventive strategies 

Research activity at FTELE.IGM is supported by seven core facilities that provide state-of-
the-art technology as well as ―house-keeping‖ assistance. Each core is supervised by a 
FTELE.IGM investigator and is composed of specialized technical staff. Four cores (AAV 
vector Core, Microscopy and Imaging Core, Cell Culture and Cytogenetics Core, Transgenic 
and Knock-out Mouse Core Facility) offer high-quality and rapid scientific and technical 
services that help to improve and speed up the work of FTELE.IGM investigators. The 
Bioinformatics Core offers expertise in exploration and analysis of experimental data 
(statistical data analysis, sequence data analysis) to help investigators in the Institute with 
their research. Finally, the Informatics Core and the General Services Core provide 
maintenance for the Institute‘s general activities and resources. 

Role in the Project: 

Development of algorithms to reverse-engineer gene regulatory networks from gene 
expression data and to identify drug mode of action. 

Expertise:  

FTELE.IGM is expert in reverse-engineering gene regulatory networks from high-throughput 
data both in yeast and mammalian cells using differential equations and information 
theoretic approaches. In addition, FTELE.IGM is also expert in Synthetic Biology specifically 
in the construction and modelling of synthetic regulatory circuits in yeast and mammalian 
cells. 

Selected recent publications (3 max): 

Iorio F, Bosotti R, Scacheri E, Belcastro V, Mithbaokar P, Ferriero R, Murino L, Tagliaferri R, 
Brunetti-Pierri N, Isacchi A & di Bernardo D (2010). Discovery of drug mode of action and 
drug repositioning from transcriptional responses. Proc Natl Acad Sci USA 107:14621–6. 

Cantone I, Marucci L, Iorio F, Ricci M, Belcastro V, Bansal M, Santini S, di Bernardo M, di 
Bernardo D & Cosma MP (2009). A Yeast Synthetic Network for In Vivo Assessment of 
Reverse-Engineering and Modeling Approaches. Cell 137: 172–81. 

Bansal M, Belcastro V, Ambesi-Impiombato A & di Bernardo D (2007). How to infer gene 
networks from expression profiles. Mol Syst Biol 3:78. 

Key Personnel:  

The research team will be led by myself (Diego di Bernardo) directing and supervising post-
doctoral fellows and graduate students, performing experiments, making decisions on 
research strategies, writing publications and presenting results at scientific conferences. We 
are requesting funding to cover a graduate student with a background in Computer Science 
or Engineering. 
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Partner 7: UNIMAN 

Description: 

The University of Manchester (UNIMAN) is the largest university in the UK. The team 
participating in this project belong to the Manchester Centre of Integrative Systems Biology 
(MCISB), one of the six BBSRC-funded national centres for systems biology. UNIMAN and 
MCISB have extensive experience in both participating and managing research projects and 
training grants, at the national as well as European level. MCISB is located in the 
Manchester Interdisciplinary Biocentre which hosts academics from a wide range of 
disciplines from 3 different Faculties. 

Role in the Project: 

Large-scale modelling; multi-scale modelling; global sensitivity analysis; software 
development. 

Expertise:  

The MCISB has strong expertise in all aspects of systems biology, the Mendes group within 
it  has special emphasis on: 
(i) development of software infrastructure and standards for systems biology (COPASI, 
 SBML, SBRML, several data and model management packages),  
(ii) modelling and simulation of large scale metabolic networks 
(iii) global sensitivity analysis 
(iv) enzyme kinetics for systems biology 

Selected recent publications (3 max): 

Smallbone K, Simeonidis E, Swainston N & Mendes P (2010). Towards a genome-scale 
kinetic model of cellular metabolism. BMC Syst Biol 4: 6. 

Dada JO, Spasic I, Paton NW & Mendes P (2010). SBRML: a markup language for 
associating systems biology data with models. Bioinformatics 26: 932–8. 

Sahle S, Mendes P, Hoops S & Kummer U (2008). A new strategy for assessing sensitivities 
in biochemical models. Phil Trans Roy Soc A 366: 3619–31. 

Key Personnel:  

Prof. Pedro Mendes is the Chair in Computational Systems Biology in the School of 
Computer Science and the Deputy Director of the Manchester Centre for Integrative 
Systems Biology. Mendes is also a Research Professor in the Virginia Bioinformatics 
Institute at Virginia Tech  (20% appointment). He obtained his PhD in Biochemistry from the 
University of Wales Aberywstwyth in 1994, where he also was a post-doc until the end of 
1998. From 1999-2000 he was the Program Leader for Pathways at the National Center for 
Genome Resources (Santa Fe, NM, USA), from 2000 onwards he has been a Professor at 
the Virginia Bioinformatics Institute (Assistant Prof, Associate Prof and now Full Prof) but 
from 2007 onwards he reduced his appointment there to 20%, taking up a Chair position in 
the University of Manchester (80%). He is also an Adjunct Professor at the Wake Forest 
University Medical School. Currently he is a member of the Editorial Board of IET Systems 
Biology and Transactions on Computational Systems Biology. He is a member of the 
BBSRC Committee C for grant reviews. Mendes has published over 70 publications, with a 
H-index of 25, and average 54 citations per paper. 

Mendes currently leads a group of 7 Research Associates and 12 PhD students. The 
research activities of his group are: 1) development of the widely used biochemical simulator 
COPASI and other software applications for systems biology, 2) enzyme kinetics 
characterization for systems biology models, 3) construction of large scale metabolic models 
(flux balance analysis and full kinetic models), 4) multi-scale modelling, 5) data mining in 
systems biology, and 6) modelling  specific biochemical processes (interleukin-1 signalling, 
iron metabolism, the pentose phosphate pathway, hepatitis C infection, growth and division 
in yeast). 
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Partner 8: USheff 

Description: 

The University of Sheffield recently appointed Neil Lawrence and Magnus Rattray to cross 
faculty positions to take a leadership role in computational systems biology and 
bioinformatics. Lawrence and Rattray are part of a new centre for mathematical modelling of 
biological systems which draws members from across the University. Their research interest 
is in the integration of mathematical models with biological data to reverse engineer the 
fundamental interactions within biological cells.  

Role in the Project: 

Data integration and visualisation, parameter estimation, dealing with parameter sloppiness, 
model ranking and applications in signalling cascades. 

Expertise:  

Lawrence and Rattray are acknowledged experts on integration of mechanistic models, 
based around differential equations, with probabilistic approaches to allow for a rigorous 
Bayesian analysis of a biological system. These approaches are particularly appropriate for 
computational systems biology where the data is typically sampled more sparsely and with 
higher noise than in traditional engineering systems. Their background is the statistical 
machine learning community and their expertise extends to latent variable modelling 
including non-linear probabilistic latent variable models. 

Selected recent publications (3 max): 

Honkela A, Girardot C, Gustafson EH, Liu YH, Furlong EEM, Lawrence ND & Rattray M 
(2010). Model-based method for transcription factor target identification with limited data. 
Proc Natl Acad Sci USA 107: 7793–8. 

Pearson RD, Liu X, Sanguinetti G, Milo M, Lawrence ND & Rattray M (2009). Puma: a 
Bioconductor package for propagating uncertainty in microarray analysis. BMC 
Bioinformatics 10: 211. 

Lawrence ND (2005). Probabilistic non-linear principal component analysis with Gaussian 
process latent variable models. J Mach Learn Res 6: 1783–1816. 

Key Personnel:  

Professor Neil Lawrence has a background in machine learning and computer science. After 
an undergraduate degree in Mechanical Engineering he completed his PhD with Professor 
Chris Bishop at the Computer Lab in Cambridge. His main expertise is probabilistic 
modelling with applications. He has considered applications to data such as speech, vision 
and robotics, but his main application focus is computational biology, with a particular 
interest in reverse engineering biological systems through probabilistic modelling. 

Professor Magnus Rattray also has a background in machine learning and computer 
science. He completed his undergraduate degree in Physics before studying for a PhD 
using statistical physics for the analysis of genetic algorithms. Since 1998 he has focussed 
on applications of machine learning and statistical methodologies in biological applications, 
including phylogenetics and reverse engineering of biological systems. 

A post-doc to be hired on this project will be developing new probabilistic methodologies for 
integrating biological data with mechanistic models for computation of Bayes factors and 
with data visualisation algorithms based around probabilistic latent variable models. 
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Partner 9: CSM 

Description: 

The CoSMo Company (incorporation in June 2010) is a very young spin-off company of both 
the CNRS (the French National Agency of Research) and Ecole Normale Supérieure de 
Lyon (one of the top scientific ―Grandes Ecoles‖). The goal of CoSMo is to conceive, 
implement, and disseminate state-of-the-art software tools dedicated to in silico concrete 
problem solving for complex systems. In order to facilitate a broad (academia and industry) 
acceptance of its modelling and simulation platform, CoSMo adopts an open-access 
software license (BSD) and as such is incubated at IXXI one of the leading French complex 
systems institutes. Founders of the company co-ordinated and participated (as WPL) to 
several European (FP6 and FP7) as well as national scale (ANR) research projects on 
various biological scientific domains like embryogenesis (animals), morphogenesis (plants) 
as well as epidemiology. As a company CoSMo is actively involved in research collaboration 
agreements in the field of immunology (Singapore Immunology Network) as well as one of 
the top 10 French industrial companies. 

Role in the Project: 

To integrate—within an open modelling and simulation platform—the required tools for the 
full model-building cycle starting from model implementation (multi-scale, trans-scale, 
hybrid, possibly geometrical models), to their reconstruction, visualisation, study, and 
hopefully their validation (with a simulation approach) against integrated databases. 

Expertise:  

CoSMo has expertise in integrated yet open software tools dedicated to model integration of 
multi-scale biological systems, with emphasis on: 

 portable modelling languages (including dynamical aspects) for systems biology; 

 integration of sub-models including over various time scales; 

 spatial models; 

 visualisation of dynamics of large scale networks; 

 model study with a strong numerical simulation approach. 

Selected recent publications: 

Not applicable. As technology-oriented researchers, we publish our code. 

Key Personnel:  

Presently, the research activities of CoSMo are carried out by 8 persons: 

 Eric Boix, CSO, who was Work Package Leader in charge of the modeling and simulation 
platform within the European project Morphex (FP6, http://morphex.org) and Dynanets 
(FP7, http://dynanets.org), received his PhD in mathematics in 1994 while studying 
formal discrete equivalent of geometrical invariants with an initial computational 
approach, and integrated the computer science laboratory at ENS Lyon where he took 
part to the development of middle-ware grid computing software (DIET) and mainly to the 
complex system simulation group within IXXI (Complex Systems Institute). 

 Michel Morvan, scientific advisor, was coordinator of the European project Morphex, 
professor of computer science at ENS Lyon, research director (―directeur d'études‖) at 
the Ecole des Hautes Etudes en Sciences Sociales (School of High Studies in Social 
Sciences) in Paris and former member of the Institut Universitaire de France. Since July 
2004, he is External Faculty of the Santa Fe Institute. His research took originally place in 
the context of theoretical computer science and discrete mathematics, by the end of the 
90s, he has oriented his research in the direction of complex systems and created in 
Lyon the "Institut des Systemes Complexes - Complex Systems Institute".  

 6 permanent software engineers which high standards for scientific software. 
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Partner 10: INSIL 

Description: 

Insilico Biotechnology is a privately owned company located in Stuttgart, Germany. It de-
signs and optimises biotechnological processes for the chemical and pharmaceutical 
industries. Successful in business since 2001, Insilico has internationally renowned 
expertise and a unique technology platform for connecting cell model libraries with 
simulation processes. Insilico analyses the latest biotech data and integrates it in genome-
wide network models. With its high-performance computing techniques, Insilico develops 
new improved solutions for manufacturing biochemicals and biopharmaceuticals and 
achieves considerable cuts in the time needed for the development of bioprocesses. 

Role in the Project: 

Provision of large-scale dynamic networks, high-performance computing  

Expertise: 

Insilico participated in a number of relevant project including HEPATOSYS (BMBF, 
Germany): systems oriented analysis of detoxification in hepatocytes; ZIM-HPC (BMWi, 
Germany): application of high performance grid computing for identifying systems dynamics 
in large-scale networks; and MedSys (BMBF, Germany): A systems oriented approach to 
cell-tissue interaction. Insilico partners in the FP7 Alternative-Testing-Strategies (Cosmos 
and Notox) as well as in the Virtual Liver Network (BMBF, Germany). Key expertise of 
Insilico Biotechnology: 

- Graphically oriented reconstruction of genome-based networks 
- Parameter estimation and network verification 
- Simulation and analysis of intracellular fluxes 
- High-performance computing 
- Data integration 

Selected recent publications: 

Maier K, Hofmann U, Reuss M & Mauch K (2010). Dynamics and Control of the Central 
Carbon Metabolism in Hepatoma Cells. BMC Syst Biol 4:54. 

Maier K, Hofmann U, Bauer A, Niebel A, Vacun G, Reuss M & Mauch K (2009). 
Quantification of statin effects on hepatic cholesterol synthesis by transient (13)C-flux 
analysis. Metab Eng 11: 292–309. 

Maier K, Hofmann U, Reuss M & Mauch, K (2008). Identification of Metabolic Fluxes in 
Hepatic Cells from transient (13)C Labeling Experiments: Part II Flux Estimation. Biotechnol 
Bioeng 100: 355–70. 

Key Personnel:  

Dr. Joachim Schmid is group leader of the Industrial Biotechnology group. He received his 
Master degree in Chemical Engineering. After a PhD on a systems-oriented approach to 
E. coli metabolism from the University of Stuttgart, he joined Insilico. 

Dr. Dirk Müller is leader of the Biopharma group at Insilico Biotechnology. Before joining 
Insilico, Dirk Müller was a Post-doctoral Fellow with Prof. J. Stelling at the Institute of 
Computational Science (ETH Zürich) focussing on signal transduction and gene regulation 
in yeast. 

Dipl.-Inform. Anne Bonin received her Diploma degree (M.Sc.) in Bioinformatics from the 
University of Tübingen. At Insilico Biotechnology, she is project leader for High Performance 
Grid Computing and has led several research projects in the area of inferring large-scale 
network dynamics. 
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Partner 11: FS 

Description: 

FS is a global supplier of ingredients with beneficial health effects. The company develops 
processes for the production of nutraceutical ingredients by fermentation of metabolically 
engineered microorganisms, produces the ingredient at toll manufacturers, has its own sales 
force and supplies the ingredient as raw material particularly to the dietary supplement and 
food industry, but also to cosmetics companies. Today, FS has just released two products 
on the market, trans-resveratrol and 1,3-1,6 beta-glucan. The former product has been 
developed by FS. The latter product has been taken into the product portfolio by FS by 
gaining exclusive rights from GlycaNova to market and sell the product in the US dietary 
supplement market. The company has currently a team of 16 researchers (30 employees in 
total) that conduct metabolic engineering, fermentation and analysis. FS is currently aiming 
at developing the production of the omega-3 and omega-6 fatty acids which is targeted to be 
the next product in FS‘ product portfolio, and further nutraceutical ingredients. 

Role in the Project: 

Software tester (preparation of recommendations for software); modelling of metabolism of 
nutraceutical ingredient producing micro-organisms, particularly Saccharomyces cerevisiae; 
simulation of nutraceutical ingredient production; generation of experimental data (flux, 
transcription and metabolite-level data) for model validation and improvement of models. 

Expertise:  

FS uses a strong metabolic engineering and synthetic biology platform for the design of 
nutraceutical ingredient producing micro-organisms. This includes extensive expertise in: 

(i) genetic engineering (incl. protein engineering) of microorganisms, 
(ii) fermentation (batch, chemostat, fed-batch) at lab-scale (300 ml – 5 L), 
(iii)  analysis of intracellular and extracellular metabolites, 
(iv) scale-up of fermentation and down-stream processing processes including production, 
(v) modelling of metabolism of microorganims, particularly S.cerevisiae. 

Selected recent publications (3 max): 

WO2005118814 (Patent). Metabolically engineered cells for the production of polyunsatu-
rated fatty acids. 

WO2008000277 (Patent). Microbial bioreaction process. 

Tavares S, Grotkjær T, Obsen T, Haslam RP, Napier JA & Gunnarsson N (2010). Metabolic 
engineering of Saccharomyces cerevisiae for production of eicosapentaenoic acid using a 
novel D5-desaturase from Paramecium tetraurelia. Appl Environ Microbiol (in press). 

Key Personnel:  

Dr. Jean-Marie Mouillon: Department Manager of the metabolic engineering group and 
Senior Research Scientist at FS. Jean-Marie has a Ph.D. in Biology from the University of 
Grenoble, France. Jean-Marie as Department Manager is leading a group of currently 6 staff 
members (3 research scientists, 2 lab. technicians and 1 lab. assistant) to conduct metabolic 
engineering during strain construction and development within Fluxome R&D. Jean-Marie is 
also actively involved as senior research scientist within the PUFA project developed at FS. 
Jean-Marie is inventor of 2 patent applications and author of more than 10 scientific 
publications.  
Dr. Hans Peter Smits: Head of Fermentation Department, Hans Peter holds a Master 
degree in Biology /Biochemistry from Utrecht University in The Netherlands and a Ph.D. in 
Chemistry from Amsterdam University in The Netherlands. Before joining Fluxome, Hans 
Peter was Assistant Professor at the Technical University of Denmark. Dr. Hans Peter Smits 
is co-author of more than 10 scientific publications and is inventor of 5 patent applications.  

To be identified FS intends to employ one bioinformatician with strong background in 
physiology and modelling of metabolism. 
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B 2.3 Consortium as a whole  

The problems targeted in this project cover a wide range of scientific disciplines and 
scientific/technological applications. Therefore, they require a multi-disciplinary, community-based 
approach, since they cannot be solved by any single research group. The BioPreDyn consortium 
brings together the necessary range of overlapping, but complementary backgrounds and 
competences to ensure a successful project. The consortium includes top European academic 
groups, plus three SMEs from seven European countries with synergistic expertise in areas 
including databases, scientific visualisation methods, statistics, machine learning, mathematical 
modelling, and biotechnological (bio-process) engineering. 

The consortium combines geographical and disciplinary diversity with academic and 
biotechnological excellence. The partners complement each other in useful and synergistic ways. 
For example, in the case of mathematical modelling of biological systems, members of the 
consortium literally cover the entire modern spectrum of techniques, from data analysis and 
visualisation, to machine learning and data-driven dynamical modelling, to global non-linear 
optimisation, to model and parameter analysis, model discrimination and optimal experimental 
design. 

The three SMEs participate in the project in order to adequately implement and exploit the results 
of the project. These companies provide complementary and suitable expertise and applications 
for the objectives of BioPreDyn: a life sciences software company (CoSMo, CSM), an industrial 
biotechnology company (Fluxome, FS) and a bioprocess engineering company (Insilico 
Biotechnology, INSIL). 

The collective expertise of the active partners is reinforced by a world-class Scientific Advisory 
Board (SAB), which includes Prof. Hiroaki Kitano (Sony Computer Science Laboratories, Japan), 
Prof. Francis Doyle III (UC Santa Barbara, USA), Dr. Nicolas Le Novère (EBI-EMBL, UK), Prof. 
Roel van Driel (SILS/Univ. of Amsterdam, NL) and Prof. Victor de Lorenzo (CNB-CSIC, ES). 

Most of the partners have previously collaborated with other participants in the consortium (see 
below). They are fully committed to the project, and have ample expertise and experience in the 
fields of activities covered by it, offering the capacity and resources to fulfil the project objectives. 
The suitability and commitment of each academic partner, together with their current 
collaborations, are detailed as follows: 

Partner 1: CRG 

 Suitability: Our group specialises in reverse-engineering developmental gene regu-latory 

networks based on spatial time series of quantitative expression data. Our experience lies in 

the application of cutting-edge modelling and optimisation algorithms to complex biological 

systems. 

 Commitment: The principal investigator, two post-docs, and a programmer/computer 

technician. 

 Existing links with other partners: (1) Collaboration (funded by the ComplexityNET scheme) 

with UvA on multi-objective, non-linear, global optimization. (2) Informal collaboration with CWI 

on parameter estimation and identifiability analysis. (3) Informal collaboration with USheff on 

inference of missing state variables and reverse-engineering of Drosophila mutants. 

(4) Informal collaboration with CSIC on global optimisation (scatter search, meta-heuristics). 

Partner 2: CSIC 

 Suitability: Our group has strong expertise in dynamical modelling and optimization of 

biological systems, with emphasis on robust parameter estimation, optimal experimental 

design and identifiability analysis and optimal control of biosystems. 

 Commitment: Three senior researchers, five post‐docs and several PhD students. 
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 Existing links with other partners: CSIC has collaborated with UNIMAN on parameter 

estimation in systems biology, and is currently having a similar collaboration with CRG. CSIC 

is also collaborating with EMBL in optimization in computational systems biology. 

Partner 3: EMBL 

 Suitability: Our group has expertise on multidimensional data processing, and visualisation. 

Mathematical modelling of signalling networks with different mathematical formalisms, with 

focus on large networks integrated with high-throughput data. 

 Commitment: One senior researcher, one scientific programmer, one post-doc. 

 Existing links with other partners: EMBL collaborates with CSIC on parameter estimation and 

other optimization problems, and with FTELE.IGM on data analysis/visualisation and network 

modelling. 

Partner 4: UvA 

 Suitability: The UvA (Section Computational Science) has long-standing experience in high 

performance computing, scientific visualization and modelling and simulation in computational 

biology, bio-medical applications and physics. Within computational biology we do research at 

a range of different levels of organisation (genome-gene regulatory networks-cells-tissue-

organism). 

 Commitment: One senior researcher, one post-doc and several Phd students. 

 Existing links with other partners: The UvA (Section Computational Science) has a 

collaboration with the CRG in computational systems biology and has a long-standing 

collaboration with CWI in several systems biology projects. 

Partner 5: CWI 

 Suitability: Our group has expertise in mathematical and computational modelling of 

biochemical systems including system identification/optimal experimental design. 

 Commitment: One senior researcher, one post-doc. 

 Existing links with other partners: CWI has collaborated with the CRG on model identification 

and with UvA on modelling (deterministic/stochastic) and parameter estimation. 

Partner 6: FTELE.IGM 

 Suitability: This group has a strong expertise in reverse-engineering of gene regulatory 

networks from gene expression data and building quantitative mode of gene regulation. In 

addition new Systems Biology approaches to identification of drug mode of action has been 

developed. 

 Commitment: One senior researcher, one PhD student and one post-doc. 

 Existing links with other partners: FTELE.IGM is collaborating with EMBL. 

Partner 7: UNIMAN 

 Suitability: This group is a pioneer in application of optimization algorithms in biochemical 

modelling and is one of the authors of the widely used software for systems biology simulation 

(COPASI), and are active participants in the SBML community effort. We have also a strong 

track record in reconstruction of metabolic networks and generating large-scale kinetic models 

from these. The group is an active member of the Manchester Centre for Integrative Systems 

Biology, which is establishing methodologies for bottom-up systems biology, particularly in 

S. cerevisiae. The Mendes group has also published research in reverse-engineering gene 

networks 

 Commitment: The principal investigator, one post-doc, and one PhD student. 
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 Existing links with other partners: UNIMAN has collaborated in parameter estimation 

algorithms with CSIC, and in establishing standards for reverse-engineering with FTELE.IGM. 
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Partner 8: USheff 

 Suitability: This group has strong expertise in probabilistic modelling applied to systems 

biology problems such as: Bayesian parameter estimation, model-based ranking of 

transcription factor targets and regulatory network inference from time-series data, Bayesian 

model selection and experimental design, High-throughput genomic and epigenomic data 

processing. The group also develops novel non-linear dimensionality reduction and 

visualisation techniques. 

 Commitment: Two principal investigators, one post-doc. 

 Existing links with other partners: USheff has an informal collaboration with CRG on inference 

of missing state variables and reverse-engineering of Drosophila mutants. 

Industrial/Commercial Involvement: Participation of SMEs 

The consortium incorporates three high-profile companies with different yet complementary 
profiles: 

 Complex Systems Modelling/CoSMo (CSM) is a software company specialised in complex 

systems modelling and simulation with a focus on systems biology. CSM expects to benefit 

from the wide range of biological problems addressed by the project as well as the diversity of 

the numerical methods, which will help CSM consolidate its know-how and expertise 

concerning the systems biology modelling cycle. 

 Insilico Biotechnology (INSIL) designs and optimises biotechnological processes for the 

chemical and pharmaceutical industries. This SME can benefit from the development of novel 

model-building strategies and their application to large-scale kinetic models of microorganisms 

integrated with regulatory and signalling networks. 

 Fluxome SA (FS) is an industrial biotechnology company, which develops processes for the 

production of nutraceuticals (ingredients with beneficial health effects) by fermentation of 

metabolically engineered microorganisms. Fluxome can greatly benefit from model-based 

methods to be developed in this project in order to optimise their processes and to guide the 

metabolic engineering procedures. 

These SMEs have the following plans to ensure the exploitation of results: 

 CSM plans to disseminate (freely for academics, commercially for corporate clients) the 

integrated software framework containing the numerical tools to be developed in this project, 

as a contribution to strengthen the European systems biology software community. It is 

CoSMo's direct interest to ensure this form of exploitation since dissemination of this code 

framework will illustrate CoSMo's expertise in scientific software development. 

 INSIL offers high-tech solutions and services to the Life Science industries and expects the 

BioPreDyn project to greatly increase its competitiveness and give it an edge over competitors, 

in particular from North America and Asia. Project results will enable INSIL to provide 

customers with novel solutions adding value at different points along the value chain in the 

future. New tools and methods developed within this project will significantly accelerate both 

model development and model verification. In combination with the envisaged integrated 

network models, this is a key prerequisite for entering new application areas in industrial 

biotechnology and in the manufacturing of biopharmaceuticals. These application areas 

include the prediction of gene targets for improving the product yield for fine chemicals such as 

succinic acid, methionine, and vitamine B2 using microbial strains like E. coli. These 

predictions can then capitalize on network models combining the interaction of metabolism, 

gene regulation and/or signalling processes. For the production of therapeutic antibodies using 

CHO cell cultures, large-scale dynamic models will pave the way for predicting the impact of 

relevant process variables like pH and/or media composition on cell growth and productivity or 
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regarding clinically important aspects of product quality, such as glycosylation patterns. Such 

predictions are notoriously difficult or unreliable using today‘s methods. Through collaborations 

within the consortium, INSIL will gain access to new know-how, which it wants to exploit for 

extending its range of services offered. During the project, INSIL plans to publicly advertise the 

BioPreDyn project through announcements on the company homepage and inclusion in its 

marketing materials such as flyers and customer presentations. INSIL is going to disseminate 

project results on conferences and will use these for acquiring new customers and partners at 

the end of the project. 

 FS: Results from BioPreDyn will be used in FS‘s ongoing development projects that focus on 

the production on resveratrol and PUFA production. The models will increase the 

understanding of heterologous biosynthesis of such nutraceutical ingredients in baker‘s yeast. 

All models that will be built within this project are planned to become an integral part of the 

technology platform of FS. Hence, this will strengthen and extend particularly FS modelling 

platform and will find application in the design of improved and other novel bioprocesses. 

Altogether, the tools and models of BioPreDyn have clearly the potential to decreasing the 

time to market of novel products. In order to secure application of such models beyond 

BioPreDyn, FS aims at employing further FTEs beyond the BioPreDyn Project lifetime. 

Furthermore BioPreDyn will lead to the identification of novel metabolic engineering and 

synthetic biology strategies. Such strategies will be tested experimentally outside the 

BioPreDyn project. In the cases of confirmation of modelling results by wet lab experiment, 

patent protection of the most promising strategy is planned, according to the BioPreDyn 

Consortium Agreement. 
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B 2.4 Resources to be committed 

 

RTD Activities (92,6% of total EC contribution) 

Personnel – The envisaged efforts to accomplish the project goals will encompass 419,9 person-
months for RTD activities over 36 months (50,1% of RTD EC contribution). 

Consumables and Equipment – The laboratories at all partner sites are extremely well equipped 
to conduct the research proposed, as described below. As a result, the major resources required 
for BioPreDyn, in addition to personnel, are workstations and software, as well as contributions to 
the maintenance and running costs of computer clusters, which are included under consumables 
or equipment, depending on the normal institution practices. These costs represent 1,7% of the 
RTD EC contribution. Specifically, partner 10 (INSIL) is budgeting a contribution to maintenance 
and running costs of their high-performance computer cluster (Intel Nehalem architecture with 
5,600 cores). 

Travel – The travel budget (2,6% of RTD EC contribution) will be used for project meetings, visits 
to partner sites and  dissemination of the project results at scientific conferences, workshops and 
other meetings. 

Other – This category (0,2% of RTD EC contribution) covers other costs such as publication costs 
and conferences fees. 

Overheads – Most partners use the special transitional flat rate (60%), with the exception of 
partner 2, 4 and 5 which uses the real indirect cost method and partner 6 with the full cost flat rate 
model. This represents 38% of the RTD EC contribution. 

Management Activities (6,3% of total EC contribution) 

The management budget will mainly include personnel costs for a part-time project manager 
(€90.000, Partner 1, CRG), project meetings and the participation of Scientific Advisory Board 
members (€14.742, Partner 1, CRG), gender budget to be assigned (€6.000), a laptop for the 
project manager (€2.000), and subcontracting for an audit certificate  (€4.000, Partner 1, CRG). 

Other Activities (1,1% of total EC contribution) 

Other activities cover dissemination (website, leaflets, posters, outreach events in collaboration 
with other European projects, sponsors of relevant events, and stalls at conferences/trade fairs) 
and training (two workshops organized by two different partners (€20.000 to be assigned by the 
coordinator).  
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Additional Resources of the Participants 

Apart from the additional costs budgeted in section A3.1 as total budget, all partners already 
dispose of cutting-edge equipment and infrastructure at their laboratories (e.g. networked high-end 
workstations with the required software for code development and testing, and/or servers for 
hosting of databases), and permanent staff, which they will provide and use for project work 
without charging related costs to BioPreDyn: 

Participant Infrastructures Additional Personnel 

CRG Access to the Mare Nostrum super-computer (>10‘000 cores connected by Myrinet), run 
by the Barcelona Supercomputing Center (BSC; www.bsc.es), granted on a three-
month, project-specific basis; as well as access to a CRG in-house cluster (~200 cores), 
mainly for testing and calibrating software. 

Dr. Anton Crombach 
(post-doc) 
Damjan Cicin-Sain 
(Programmer) 

CSIC CSIC‘s HPC cluster with 98 cores and access to the HPC facilities at CESGA 
(www.cesga.es), which includes the Finisterrae super-computer, currently the third most 
powerful in Spain. 

Dr Antonio A. Alonso, 
Dr. Balsa-Canto 

EMBL EBI hosts a number of databases, including ArrayExpress (gene expression), Ensembl 
(Genomics), PRIDE (proteomics), and IntAct (proteininteraction networks), which will be 
used extensively during this project. 

Jerry Wu (scientific 
programmer) 

UvA The Section Computational Science has access to several large-scale facilities (e.g. the 
Lisa computing cluster in Amsterdam, the DAS-II distributed computing cluster in the 
Netherlands) and has a fully-equipped visualization lab. 

Dr. Carolina 
Cronemberger (post-
doc) 

CWI CWI has an excellent IT environment, it owns (among others) a Linux cluster (48 64-bit 
dual Opterons), and the group has access to the HPC systems of SARA 
(subtrac.sara.nl/userdoc), the Dutch National High Performance Computing and e-
Science Support Center, and the Dutch supernode in the International Science Grid. 

none 

FTELE.IGM FTELE.IGM‘s Bioinformatics and Informatics cores will provide support for the 
installation and maintenance of our relational database infrastructure. 

Post-doc (to be hired) 

UNIMAN The UNIMAN group has access to the computational resources of the Manchester 
Centre for Integrative Systems Biology, composed of two 16-core servers, which are 
dedicated to website and database servers, and access to a large CONDOR pool of 
over 1500 cores that are available for high-performance computing in the Faculty of 
Engineering and Physical Sciences of the University of Manchester. 

PhD student (to be 
hired) 

USheff Our group has access to the computational resources of the University of Sheffield. none 

CSM CoSMo shall provide the servers for hosting the website, the collaborative code 
development framework (SVN, Trac) as well as the agile programming platform (Cdash) 
for continuous software builds in order to assert code quality. 

6 software engineers 
(providing support) 

INSIL In-house high performance computer cluster (Intel Nehalem cluster with 5,600 cores). Dr. Dirk Müller 
Anne Bonin 

FS Fluxome has the required lab infrastructure to collect additional experimental data on 
their S. cervisiae production strains if required. 

Dr. Hans Peter Smits 

 

https://owa.crg.es/owa/redir.aspx?C=80e6a81f97ea4584a8bf457f560de3a1&URL=http%3a%2f%2fwww.cesga.es
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B3. Impact 

B 3.1 Strategic impact 

The BioPreDyn project aims at developing new bioinformatics methods and tools for data-driven 
and predictive dynamic modelling with the final goal to better understand specific biological 
questions and datasets, as well as to implement and pave the way to new biotechnological 
applications. By bridging multiple disciplines (from bioinformatics, systems biology, microbiology to 
biotechnology), and interlinking diverse players (universities, research centres, international 
organizations and SMEs) the project will have a profound impact (as described more extensively in 
the following sections), matching the expectations of the call, the KBBE Work Programme 2011, 
and the Europe 2020 strategy. 

Better Exploitation of Existing Databases 

‗Omics‘ tools, the high-throughput methods to characterize genes, proteins, small molecules and 
their interactions in a precise, quantitative and dynamic fashion, are continuously being improved 
and applied to a wide range of complex systems in biology. This trend poses the great challenge of 
making sense out of the enormous amount of data we are producing. BioPreDyn will strive to 
better exploit existing databases by developing tools, methods and workflows for semi-automated 
data integration and visualisation (WP1/2). Moreover, the consortium will find solutions to guide 
the user in dealing with dynamic expression data, with data across space, incomplete, 
heterogeneous or noisy data. Within WP3 (and also WP8), software tools and workflows will be 
integrated in a single computational framework that will support the entire systems biology 
modelling cycle (Fig. 1) overcoming many current problems in modelling: software often too 
difficult to use, software not compatible or interoperable, different languages and data formats. 
Finally, these concerted efforts will lead to an increased predictive and interpretative capacity of 
the available data. 

The infrastructure that BioPreDyn generates will be made available to the scientific community 
(freely) and to the private sector: datasets will be integrated in the NetBase infrastructure provided 
by FTELE.IGM, while CSM will provide a centralized, and standardised software suite with 
graphical interfaces for our tools. Thanks also to our dissemination and training activities, this will 
have a profound impact not only on research in general, but also on the translation of research 
findings and new methodology into new biotechnological (and medical) applications. 

Paving the Way for New and Optimised Biotechnological Applications 

The computational tools, software and workflows generated by BioPreDyn will be of general use. 
As proof of concept, partners will apply this infrastructure to a selected set of fundamental 
biological questions and biotechnological applications. This parallel way of operating will also 
facilitate the dialogue and knowledge sharing between the academic and the industrial 
partners, since most likely they will face similar technical and methodological problems. In 
addition, new findings in basic research (WP4–6) will pave the way to novel strategies in 
development of biotechnological processes (WP7). 

Despite the fact that microorganisms can play harmful roles, they are nowadays becoming crucial 
in solving a wide range of societal, environmental, health, and economical problems. 
Microorganisms can in fact be engineered to provide alternative sources of energy or bulk 
chemicals, clean up the environment from wastes and toxic substances, produce food additives 
(nutraceuticals) or therapeutic proteins, as few examples. We have at our disposal a vast biological 
knowledge and battery of tools to modify microorganisms, but we have learned in the past that 
microbial engineering requires a system-wide approach rather than a reductionist way by 
intervening on a single gene or protein. Recent news such as the engineering of E. coli to produce 
different types of biodegradable plastic and the getting closer to the production stage of bacterial 
fuel production show that the field offers exciting opportunities that BioPreDyn does not want to 
miss. 

WP4 will focus mostly on large-scale models of microbial and eukaryotic cells. FS uses as 
preferred microorganism S. cerevisiae for the production of nutraceuticals, such as PUFA (long 
chain omega 3), traditionally recovered from fish stocks. Taking into account that fish stocks are 
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today under extreme pressure worldwide—and some studies even predict the collapse of 
commercially exploited fish stocks—S. cerevisiae large-scale dynamic modelling (WP4) will likely 
provide new insights in microbial physiology to implement fast, safe, efficient and cost-effective 
production of PUFA from sustainable natural sources (WP7). INSIL will benefit of basic findings to 
optimise new pathways, productivity and specific characteristics of bacterial strains for 
biotechnology-based production of a diverse range of biopharmaceuticals and fine chemicals. 

Benefit for Academia and SMEs 

BioPreDyn will generate a mutually beneficial partnership between eight academic labs and three 
SMEs. Academic groups will benefit from the establishment of proof-of-concepts for the technical 
and economical exploitation of the know-how and infrastructure generated by the project. As 
already mentioned in section 2.3, the SMEs involved in the project will profit in slightly different 
ways. 

First, the benefits for the CoSMo Company (CSM), as a software company, are clear. When 
designing, integrating, testing, and validating tools in tight cooperation with the researchers that 
use them, CSM will be able to gain a clear understanding of the needs, and advanced prototypes 
of solutions for those needs. The tools for this young field of research are not trivial and the 
requirements are in constant evolution: being part of the research (as insiders) enables CSM to 
have a very upstream and thus privileged position for tomorrow‘s software service and commercial 
tools. Being present in early stages thus provides CSM with the opportunity of testing many 
prototypes, to close some possible avenues of development and to open new ones. Beyond early 
positioning, another main attraction of the project for CSM is its integrated and collaborative 
approach. 

The other to corporate partners (INSIL and FS), will profit in two ways: First, they will get access to 
cutting edge computational tools, for which no commercial software tools exist. In this way, they 
can benefit from transferred knowledge from the academic sector before such methods become 
widely used. Second, they can profit from the expertise required to run and test such methods, 
many of which are complex, and not trivial to tune and apply to specific applications. Examples 
include using novel models and methods developed in the context of this project to predict gene 
targets for improving product yield for fine chemicals such as succinic acid, methionine, and 
vitamine B2 using microbial strains like E. coli, as well as for the production of antibodies in CHO 
mammalian cell lines (INSIL), and the production of nutraceutical ingredients in yeast (FS). 
Applications of cutting-edge optimization methods to production processes can help these SMEs to 
improve rational design of bioproduction processes, and to minimize the time to market of novel 
products. 

Overall, synergies between academic partners and SMEs catalysed by BioPreDyn will facilitate the 
development and application of microorganisms in industrial and medical biotechnology, and 
contribute to shortening time to market (from idea to market). In general, competiveness of SMEs 
will be strengthened and properly equipped to take on competition not only from the US but also 
from emerging countries such as China, India and Brazil. 

Boosting European Innovation 

Research and innovation (Europe 2020) are at the core of BioPreDyn. The project will pursue a 
holistic approach from basic research to translating the project results to developing markets in 
biotechnology, making a step forward in bridging the so-called innovation gap. 

Since the three SME partners work in close collaboration with other industries, the beneficial 
impact of BioPreDyn on biotechnology will be further amplified. FS, as example, develops 
production processes for nutraceutical ingredients, and delivers its protocols to larger companies 
that implement production of nutraceuticals or similar ingredients on a large scale. FS sells its 
products to the dietary supplement industry, an industry that more and more demands products at 
constant high quality and at low price. INSIL predicts and optimizes microbial biotechnological 
processes for the food, agro, and healthcare industries, collaborating with major players in the 
field, such as Bayer Technology Services, Boehringer Ingelheim, and DSM Food Specialty. 

Finally, the project will integrate education and innovation aspects through inter-sectorial 
(academic labs and SMEs) visits of young researchers working in the project, one specific 
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workshop during the first year, and active participation, monitoring and mentoring by the Innovation 
Board. 

B 3.2 Plan for the use and dissemination of foreground 

Training, dissemination and exploitation activities are central to the project and a dedicated work 
package (WP8) hase been designed for their implementation at the highest standards. The 
following sections describe the strategy for each activity in more detail. 

B 3.2.1. Training 

The interdisciplinary nature of the project will offer great training opportunities for the junior 
researchers involved (PhD students and post-doctoral research fellows). Moreover, mobility of 
researchers will be promoted among labs and among academic groups and SMEs (WP8). More 
specifically, the following training activities will be organized: 

 Two week-long workshops (CRG and EBI/EMBL). The 1st workshop will be open only to 
people directly involved in the project, and the 2nd will aim at training scientists outside the 
consortium in the methods developed during this project. Both workshops will focus on the 
state-of-the-art and novel methods and computational tools to better exploit databases, 
integrate and visualize data, and build and validate computational models. International 
experts will be invited to contribute to both workshops. The 1st workshop will also offer training 
on intellectual property, technology transfer, and innovation under supervision of the 
Innovation Board. Both workshops will also include a session to illustrate case studies where 
our tools will be applied to specific and applied problems in biotechnology, including a 
discussion on ethics and their impact on society at large. 

 An additional workshop on modeling and simulation using COPASI will be organized by 
Pedro Mendes (examples of lecturing courses at the link http://www.mcisb.org/workshops). 
The format is usually a 3-day long workshop and has good attendance. EBI is leading several 
training activities on modeling, such as ―FEBS: In Silico Systems Biology: Network 
Reconstruction, Analysis and Network-based Modelling‖. BioPreDyn will provide support to 
such initiatives (in terms of ―sponsor‖ and ―trainees‖). We envision one to two hands-on 
workshops in the course of the project. 

 Short-term and medium-term exchange scheme. Partners will encourage exchange visits 
among the labs, especially between the academic and private sectors. This scheme will 
facilitate knowledge transfer and open wider career opportunities to the junior PhD students 
and post-doctoral fellows involved in the project. As previously described, the Innovation 
Board will also play a mentoring role for researchers in the project looking for professional 
development in the industrial sector. 

 Shared junior fellows. The academic partners of the project have agreed to facilitate the 
long-term exchange of post-doctoral researchers who will spend one or two years in one lab 
and then will move on to another for the remaining time of their three-year contract. 

We believe that the benefits of our proposed mobility schemes can be justified as follows: Junior 
researchers, such as PhD students and postdoctoral fellows can profit from working in different 
partner groups in many ways: they will learn about different aspects of the project, they will gain 
expertise in different methods and applications, and they will gain personal experience by working 
in different academic and/or corporate environments (as well as in different countries!). We expect 
this to result in increased scientific and transferable skills for the junior scientists involved. 

On the other hand, project partners profit from the direct transfer of skills and knowledge such 
movement creates. Instead of experts instructing other scientists (often across long distance), the 
experts will be directly moving between groups to increase the exchange of expertise between the 
partners. For instance, a scientist working on a specific optimization or modeling task could move 
from an academic setting, where (s)he was involved in method development, to an SME which is 
using the novel method in their particular applications. Since it is one of our main aims to exploit 
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the synergies created by pooling the different kinds of expertise of the partners involved (see also 
above), we believe our mobility scheme to be an important and productive addition to our project. 

Finally the project may sponsor relevant workshops and training events. 

B 3.2.2. Dissemination 

One central activity of BioPreDyn is the dissemination of scientific and technological knowledge 
that is generated by the project. The support by the EC will be acknowledged in any measure 
taken to disseminate the project results and to engage with the public and the media. A project 
website will be designed by the PM team, based on previous experience (see, for example, 
http://www.systemtb.eu, or http://www.geuvadis.eu), and the content will be implemented together 
with all partners. The BioPreDyn website will be the main portal for the scientific community, the 
general public, stakeholders and policy makers. 

Dissemination of scientific and technological results to the scientific community and industry will be 
implemented following the usual procedures: publication in peer-reviewed journals (preferably 
open-access publications), presentations at international conferences and professional trade 
shows, practical courses, seminars and workshops. Moreover, the consortium will create a unified 
and consistent code infrastructure that includes all the methods and tools implemented and 
developed during the project. This platform will enable easy establishment of flexible, automated 
workflows, and guarantee interoperability and comparison of methods and tools. It will be 
distributed freely for academic purposes, and a commercial version will be developed by CSM (see 
section 3.2.3). 

Overall, BioPreDyn will promote synergies with other EU and non-EU funded initiatives and 
European communication platforms, such as CommNet about food quality and safety 
(www.commnet.eu). We envision also the organisation of a common workshop with other related 
European projects. 

To catalyze the interaction between experiment and theory in the area of cellular network inference 
and quantitative model building in systems biology, the DREAM (Dialogues in Reverse Engineering 
Assessment of Methods; www.the-dream-project.org) initiative was launched six years ago. 
DREAM revolves around optimisation ‗challenges‘ that are posed yearly to the community, which it 
then tries to solve; results are evaluated and discussed in a conference. The emerging picture is 
one where there is no single method that performs best for all types of data and questions; indeed, 
combining results of multiple methods, often leads to better results (Prill et al. 2010). Partners of 
our BioPreDyb are either already actively involved in DREAM (EMBL, FTELE.IGL) or will be 
encouraged to participate in it. 

BioPreDyn partners will follow the activities and communications from the European Technology 
Platform for Sustainable Chemistry (SuSChem) and participate in their stakeholder workshops. 

The CRG has recently submitted a proposal to the EC together with other European top research 
institutes (such as the Karolinksa Institute, EMBL, INSERM and Charité University) to create a 
European network for communication of scientific results funded by the EC, targeting a broad 
range of groups (general public, schools, policy makers, stakeholders, etc). If successful, the 
network will be highly beneficial for the communication strategy of BioPreDyn.  

The project will also engage in a dialogue with society at large and specific target groups. The 
type of modelling and optimisation for reverse-engineering carried out in this project is applicable to 
a very wide range of complex problems (ranging from biological and biotechnological systems as 
those described above, to the modelling of ecosystems, to the modelling of complex organizations 
and financial markets etc.). It is therefore, of broad importance to society. The project webpage will 
contain a session dedicated to the general public, which will explain the importance and context of 
our project, including videos and other source of media material. Project results will also be linked 
to the ―Bulletin Board System‖ database of the Enterprise Europe Network, and communicated to 
the authorities managing the Cohesion Policy Fund. 

Communication actions related to the project will be co-ordinated by the PM Team with the 
collaboration of the partners and the press offices at their respective institutions. Press releases 
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concerning BioPreDyn will be co-ordinated and synchronized in the partner countries. Media 
articles and interviews in newspapers, radio, TV and podcasts will be promoted to enable 
dissemination to a broader audience and increase public engagement in scientific research and 
biotechnology.  

The coordinator (CRG) has strong experience in organizing successful outreach activities, such as 
scientific cafés (specifically, a café on GMOs was organized in 2009), ―easy science‖ lectures, 
handson workshops for children, and courses for science professors. The coordinator and the 
personnel working on this project will actively participate in, and inspire the theme of many such 
activities. Other examples include the following: Partner 5 (CWI) is becoming quite active in 
promoting systems biology, establishing good contacts with the local media, Dutch press, etc. 
Partner 3 (EMBL-EBI) coordinates several communication and training actions (see 
http://www.ebi.ac.uk/ott for details). As a general strategy, the CRG will promote networking 
between the communication departments at the partner institutes to share best practice and 
encourage them to organize outreach activities on systems biology, modeling and their 
applications, including engaging the general public with the issues related to GMO acceptance. 
Finally, the BioPreDyn website will contain specific pages dedicated to describe the project to the 
general public. 

B 3.2.3. Exploitation of Project Results and Management of Intellectual Property 

As previously mentioned (see section 2.1.2), the project will produce intellectual property (IP) of 
significant value for the scientific community, for SMEs involved in bio-technological production 
processes, and for companies interested in using modelling for process optimisation in general. 
The effective management of IP is guaranteed by dedicated work packages (WP8 & WP9) and the 
creation of an Innovation Board (IB) formed by experts in technology transfer and software 
development from each partners‘ institution and from each of the SMEs. The IB will have a central 
role in the project from its beginning. Additionally, a Consortium Agreement (CA) will be signed 
by all academic and private partners, which will regulate all aspects of IP, access rights and 
software in detail. 

The main exploitable IP expected to result from our project consists of software developed by all 
academic partners, and the SME CSM. Additionally, a second SME (INSIL) and several academic 
partners will be interested in incorporating methods developed during this project into their own 
(open-source or proprietary) software platforms. One of the main legal issues, therefore, concerns 
integration of different codes under different licenses into common computational frameworks. This 
issue will be dealt with by the Innovation Board (IB), as detailed in section 2.1.2 above. 

As general philosophy, we will aim at implementing an open code-sharing environment within the 
consortium, in which academic partners agree to exchange code (wherever possible) or 
specifications of algorithms (in pseudo-code or equivalent formats) among themselves. 
Furthermore, code to be developed within this project will be offered to partners within the 
consortium before it is offered to outside companies interested in its commercial exploitation. 
Those partners who need or want to integrate codes into their respective computational 
frameworks will be granted a first option to negotiate an agreement to adapt the required code 
(generated by another partner) on conditions to be discussed on a case-by-case basis. Such 
agreements should result in royalty-bearing licenses if commercial exploitation is intended. 

CSM operates a dual-licensing strategy, which it will implement for shared code developed within 
BioPreDyn. Their software will be made available to the academic community for free, while an 
enhanced commercial version will be available, featuring an improved GUI or other features 
concerning ease of use of the package. 

This basic IP framework will be integrated and further elaborated in the Consortium Agreement, 
according to the DESCA model and including the special module with detailed provisions on 
software, which allocate liability and responsibility between the parties. 
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B4. Ethics Issues 

Not applicable 
 

B5.   Gender Aspects 

Equal Opportunity Policy  

An equal opportunity policy regarding recruitment will be followed by all partners, without, however, 
taking precedence over quality and competence. Researchers will not be discriminated in any way 
on the basis of age, ethnic, national or social origin, religion or belief, sexual orientation, language, 
disability, political opinion, or economic condition (―non-discrimination principle‖). 

The institution of the main project co-ordinator (CRG) has adhered to the ―European Charter for 
Researchers and Code of Conduct for the Recruitment of Researchers‖ and will remind all partners 
of good practise for researchers and employers as stated in the EC Document. 

Gender Balance 

Europe is still far from gender balance in science and technology, especially in the leading and 
decision-making positions (She Figures 2009, European Commission). Similarly, the 
biotechnological sector witnesses the same underrepresentation of women in leadership roles (EC-
US Task Force on Biotechnological Research Workshop, 2009). Within the consortium, one group 
leader is a woman (Joke Blom, CWI). The project will promote: i) gender awareness by collecting 
relevant documents, statistics, events, etc in a dedicated session of the website; ii) transparency in 
the selection procedures (in accordance to the section above); iii) mentoring of young researchers 
(female and male) in the development of their scientific career and especially in ―making the jump‖ 
to independent positions. 

Work & Life Balance 

Most of the partner institutions promote gender-friendly policies with flexible working hours and 
appropriate infrastructures to help scientists reconcile professional and private life. BioPreDyn 
meetings and workshops will be organized during working days and we will do our best to provide 
childcare whenever needed. Moreover, the project will take a specific concrete action. Up to 2 
awards of the value of 3,000 € each will be established for young researchers appointed by the 
project (independently of gender). These prizes shall be assigned in case of maternity/paternity 
and shall be used to top-up the salary of technicians, students, or post-doctoral research fellows to 
carry over the project of the mother/father scientist or as a contribution to baby-sitting/domestic 
help to help the mother/father scientist to go back to research. The candidates will be selected by 
the PSC based on scientific excellence. However, priority will be give to women. 
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