Genetic variation and mapping bias in exon quantifications

- Reference allele mapping bias = reads carrying the reference allele of variant sites map better than reads with alternative alleles
- "SNP in a probe", so not just noise a potential source of false genetic associations!

Analysis

- Two individuals (HG00355, NA06986), of the sandbox; mapping with bwa to
 - 1. Standard hg19 reference
 - Hg19 with all European 1000g SNPs with MAF>5% masked (changed to a nucleotide that is not one of the SNP alleles)
 - 3. Personalized Hg19 built with AlleleSeq tool based on the 1000g SNPs of these individuals
 - built paternal & maternal genomes, map to both separately, and combine the result files taking the best quality mapping
- Analyzing exon counts, normalized by the total number of reads
- To be done: ASE analysis

Mapping statistics

COUNT	bwa		
HG00355	hg19	hg19_mask	hg19_pers
TOTAL READS	71,987,632	71,987,632	71,987,538
MAPPED READS	38,537,502	38,480,142	45,051,066
EXONIC READS	31,817,668	31,752,122	36,708,566
LINKED READS	579,678	584,696	622,680

COUNT	bwa		
NA06986	hg19	hg19_mask	hg19_pers
TOTAL READS	61,003,566	60,814,748	61,003,472
MAPPED READS	31,580,394	31,482,522	38,206,888
EXONIC READS	26,762,074	26,670,238	31,794,952
LINKED READS	492,476	495,168	546,236

TOTAL READS	100.0%	100.0%	100.0%
MAPPED READS	53.5%	53.5%	62.6%
EXONIC READS	44.2%	44.1%	51.0%
LINKED READS	0.8%	0.8%	0.9%

TOTAL READS	100.0%	100.0%	100.0%
MAPPED READS	51.8%	51.8%	62.6%
EXONIC READS	43.9%	43.9%	52.1%
LINKED READS	0.8%	0.8%	0.9%

- Hardly any loss of reads in masking
 - need to try masking of all variant sites
- A lot more reads map to personalized genomes
- 462,714 exons in the comparison

Differences between mapping approaches

Mapping bias and differences between samples

...and some additional results suggesting that differences between individuals are smaller for personalized genome mapping.

Mapping biases are usually small relative to individual differences – but this is not necessarily true for those individual differences that associate to genetic variation

Conclusions

- Mapping bias has some effect on exon quantifications, and I suggest taking this into account in Geuvadis
- Personalized mapping would be ideal, but is more work and tricky for those 40 individuals that don't have a full genome
- Masking doesn't lead to a big loss of mapping a straightforward option