Integration of transcriptome and genome sequencing uncovers
functional variation in human populations
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MRNA and miRNA sequencing of 465 samples from Enrichment of eQTLs in functional regions uncovers causes and
the 1000 Genomes project effects of regulatory variation

Aims of the study: (1) How to do distributed RNA sequencing? (2) What can we learn of transcriptome
variation and its genetic component by integrating genome and transcriptome data from hundreds of
individuals? (3) Create one of the biggest reference datasets for transcriptomics.

The best eQTL variants are significantly enriched in functionally annotated regulatory and coding
regions (Ensembl Regulatory Build, Gencode v12), with an overrepresentation of especially promoter
and enhancer annotations as well as splicing and nonsynonymous variants.
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