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Supplementary Figures
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Figure S1: Study design

An illustration of the study design shows the studied populations and samples
(a) from which the 1000 Genomes Consortium created genome sequencing and
genotype data, and we sequenced mRNA and small RNA in seven European
laboratories (b), with the final data set consisting of genotype and RNA-
sequencing data from 462 and 452 individuals for mRNA and small RNA,

respectively (c).
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Figure S2: Analysis of regulatory genetic variation

Analytical approaches for studying genetic effects on transcription from RNA-
sequencing data: a) transcriptome QTL analysis, where the aim is to find genetic
variants that associate to a transcriptome quantitative trait (such as gene
expression level) in a population sample. First, association between genotypes
and transcriptome quantitative traits is calculated for all variant - transcript
feature pairs usually in a genomic window (left panel, where each data point is
an individual), and the resulting p-values for each gene can be plotted as a
landscape of associations in the reagion flanking the gene (right panel; each data
point is a genetic variant with the genome-wide significant associations in red).
(b) illustrates allele-specific transcription analysis that aims to identify
differences in transcription between the two haplotypes of an individual. In
allele-specific expression (ASE) analysis, we search for differences in the ratio of
the two alleles, here comparing if the total count of T and C alleles is different
from 50-50. In allele-specific transcript structure (ASTS) analysis we ask if the
distribution of T- and C-carrying reads or their mates is different across exons
(here a 2x4 table).
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Figure S3. Genotype data quality control
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Multidimensional scaling plot of identity-by-state matrix of all the samples
shows a clear clustering not only by continent, but also by whether the sample
had full genome data or was imputed (a). Principal component analysis within
Yoruba (b) and within Europe (c,d) shows population structure especially within
Europe. Based on these results, the imputation status and PCs 1-3 for Europeans
and PCs 1-2 for Yoruba were included as covariates in the QTL analyses.
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Figure S4. Read and gene count distributions

mRNA statistics per sample of total read counts (a) mapped read counts
(MAPQ>150, properly paired, NM<=6) (b), and gene counts (>1 RPKM) (c), and
small RNA statistics of total read counts (d) miRNA read counts (e), and miRNA
gene (>0) counts (f). These distributions have few outliers, especially in gene
counts, demonstrating the uniformity of the raw data. The mRNA replicate
samples refer to 168 low-coverage replicate samples that were not used in the
analysis.
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Figure S5. miRNA quality control

Combination of various quality control statistics of small RNA sequencing (total
read count, proportion of mapped reads) and miRNA quantification (miRNA read
count, proportion of miRNA reads, and number of quantified miRNAs). These
plots demonstrate that except for 13 outliers that were excluded from the final
data set, the final quantification data is very uniform.
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Figure S6. Sample clustering

Multidimensional scaling of pairwise sample correlations based on exon (a, b),
transcript (c,d) and miRNA (e,f) quantifications normalized only for the total
number of mapped reads. The same data is shown colored by population (a, c, €)
and by sequencing laboratory (b, d, f).
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Figure S7. PEER covariate analysis

The number of cis-eQTLs in a small test data set was used to evaluate the
performance of PEER normalization for all quantifications; here it is shown as a
function of the number of corrected covariates for mRNA (a), transcript (b),
miRNA (c) and repeat (d) quantifications. For the final analysis, the data was
normalized with K=10 except for repeat quantifications for which PEER
normalization was not done.
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Figure S8. Sample clustering after normalization

Multidimensional scaling of pairwise sample correlations based on exon (a, b),
transcript (c,d) and miRNA (e,f) quantifications after PEER normalization. The
same data is shown colored by population (a, c, €) and by sequencing laboratory

(b, d, ).
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Figure S9. Replicate correlation after normalization

Correlation of the five replicate samples based on mRNA exon (a) and miRNA (b)
quantifications after PEER normalization, partitioned by lab and individual. In
mRNA sequencing, the same samples were sequenced twice in one lab. See Fig.
1a for similar analysis before normalization. While the normalization does not
eliminate all lab effects, the lab effects are considerably smaller than biological
differences between individuals.
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Figure S10. Transcript quantification statistics

Various transcript quantification metrics were computed at gene-level to
evaluate the quality of the quantifications. The plot is based on values calculated
for all individuals, plotted as population medians (points) and first/third
quartiles (dashed lines). We show the number of transcripts expressed (>0.1
RMPK) in each population (a), ratio of the major transcript of the total per gene
(b), splicing entropy, where one transcript expressed would result in low
entropy and all transcripts expressed equally would give a high value (c), and
splicing dispersion which represents the variability in the space of the splicing
ratios. (d). The genes are grouped according to the number of different
transcripts detected when pooling all the samples together (x-axis), as the
theoretical boundaries of the metrics depend on the number of transcripts
observed (shown as lines in (a) and (c).

The general distribution of these metrics indicates good quality transcript
quantifications with expected patterns - not all possible transcripts should be
detected in a sample derived from one individual and one cell line, and having
one transcript per gene with higher expression levels than others rather than
equal quantifications of all is also a pattern that is believed to reflect the
underlying biology of transcription. These basic metrics are also highly
consistent across the populations.
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Figure S11. Transcript variation between population pairs

For each gene, we can calculate the proportion of expression level variation (as
opposed to splicing) of the total expression variation between individuals in each
population (see Supplementary Methods). (A) shows the general distribution of
this statistic (similarly to Fig. 1b), here only for CEU but separating genes by
expression level. This shows that lowly expressed genes where the statistic
might be noisier do not cause major shifts in the distribution. Other populations
show a similar pattern (data not shown). In (b), we compare the proportion of
expression variation per gene between all population pairs. The consistency
between populations indicates that each gene has a characteristic pattern of how
much expression versus splicing variation it allows.

Furthermore, for each gene, a small proportion of total gene expression
variation is explained by difference between population pairs, and we
characterized these differences using several methods. (C) shows the proportion

13



of differentially expressed and differentially spliced genes between population
pairs using the DEXSeq method. Additionally, in (d), we calculated how much of
between-population variation is explained by variation in expression levels, and
show this distribution for population pairs for genes with high level of
population differentiation (between-population variation >2.5% of total). We
observe that differences between the African YRI and European populations
have less contribution of differential expression levels than European pairs,
suggesting a bigger contribution of splicing variation between continental
populations.

Together with the results from differential expression/transcript usage
analysis (Fig. 1c), all three analysis methods indicate higher contribution of
splicing differences in between-continent transcript variation. Cell line age may
contribute to the variation seen between European population pairs (Ferreira et
al. submitted), but since the population with a distinct pattern is YRI rather than
the oldest CEU cell lines, and the YRI-EUR comparisons are all very similar, it
appears unlikely that the trend would be solely due to cell line batch effects.
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Figure S12. miRNA quantification statistics

Expression of 644 autosomal miRNAs detected in 452 individuals is shown in (a)
with mean and s.d. of normalized read counts. (b) shows the cumulative fraction
of miRNA reads explained by miRNAs of decreasing abundance. The black lines
indicate the 50% fraction (explained by the 6 most abundant miRNAs), 90%
fraction (explained by the 29 most abundant miRNAs) and the 99% fraction
(explained by the 122 most abundant out of 644 total miRNAs). These plots
indicate that the highest expressed miRNAs account for the vast majority of the
total miRNA pool of the cell. (c) shows the quantification distribution of miRNAs
with mirQTLs, which are found relatively evenly in lowly and highly expressed
miRNAs.
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Figure S13. Trans-effects of mirQTLs

Variants that associate to miRNA expression levels (mirQTLs) can potentially be
trans-eQTLs for the target genes of these miRNAs. We sought for this effect in
(a,b) by comparing trans-eQTL p-value distributions of cis-mirQTLs to the
predicted target exons of the affected miRNA (y-axis) to a null distribution to
non-target exons. This comparison was done separately for positive (a) and
negative associations (b), i.e. those where the cis-mirQTL allele increasing the
miRNA expression has positive or negative correlation to the exon, respectively.
The p-values are from a KS test, and indicate a small excess of low p-values for
negative associations. Furthermore, (c) shows histograms of the p-value
distributions, with the skew towards low p-values quantified by the pil statistic
(1-pi0), again indicating enrichment of low p-values only in negative associations
with real targets. The slightly lower p-values for negative associations makes
biological sense, since miRNAs are usually believed to downregulate their
targets. While we do not find a long tail of p-values indicating cis-mirQTLs being
highly significant trans-eQTLs, the overall shift of the p-value distribution can be
a sign of small effects of genetic variants affecting miRNA levels leading to
downstream effects on the miRNA targets.
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Figure S14. Coexpression of exons of the same gene

Correlation between quantifications of exons from the same gene for chr20 in
the European data set. For many exon pairs, the correlation is not very high,
indicating frequent splicing variation within genes, consistently with the large
number of independent eQTL signals for different exons of the same gene.
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Figure S15. eQTL-trQTL sharing

We analyzed the overlap of gene eQTLs affecting total gene expression levels,
and trQTLs affecting transcript ratios. The barplot shows the proportion of genes
with each type of QTL (left), and of the genes with both gene eQTL and trQTLs,
how many are driven by independent genetic effects, versus same or linked
causal variants (right). The sharing is measured by correcting for the best trQTL
variant in eQTL analysis, and observing if the significant gene eQTL signal
remains. This analysis is possible due to the measurement of gene expression
levels and transcript ratios being independent - a biological change in only one
does not change the statistical measure of the other, thus any correlation is likely
to be biological rather than technical. For exon eQTLs this would not true, since
they can be affected both by changes in splicing and expression.
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Figure S16. Transcribed repeat eQTLs

Out of the 43,875 repeat elements that were expressed in at least 50% of the
samples, 5,763 repeat elements had significant cis-eQTLs in EUR. The class of
LTR (long terminal repeat retrotransposons) was overrepresented among the
repeats with significant cis-eQTLs (Fisher P<0.001; a). (b) Distributions of
correlation of quantifications between repeats and exons for pairs that share an
eQTL or for random pairs. This analysis was done after summing up
quantifications of flanking repeats with a shared eQTL. This suggests that
transcribed repeats can be controlled by the same regulatory machinery as
nearby genes and affected by same regulatory variants (KS p<2.2 x 10-16)
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Figure S17. Indel enrichment in eQTL variants

We calculated the proportion of indels among the 1st, 2nd | 5th and 10t best QTL
variants and in the matched null for eQTLs in EUR, p= 0.00019 (a), eQTLs in EUR
using only noncoding variants, p= 2.707e-05 (b), trQTLs in EUR, p=0.17 (c),
eQTLs in YRI, p= 0.0019 (d). We see a clear significant overrepresentation of
indels in eQTL and trQTL variants. We analyzed only noncoding-variants in (b)
to confirm that the enrichment is not driven by mapping bias. The higher
number of mismatches in mapping of indel reads could potentially lead to allele-
specific bias in quantifications, and a false eQTL signal for the variant causing the
mapping bias. However, the similar result for only noncoding variants implies
that this is unlikely, since RNA-seq reads rarely map to noncoding regions and
eQTLs there should not be affected by this bias.
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Enrichment of eQTL variants in functional annotations relative to a matched null
distribution for the 1st (most significant) eQTL variant as well as 2nd, 5th and 10th
best variants for EUR eQTLs in chromatin states (a), and YRI eQTLs in Ensembl
Regulatory Build and coding annotations (b) and in chromatin states (c). See
Figure 2a for the figure of EUR eQTLs corresponding to (b) and (c). The numbers
above the bars denote -1log10 p-values of a Fisher test between 1st eQTL variants
and the null for each category. There is an overall high enrichment of eQTLs in
functional elements, especially for the 1st

Figure S18. Functional annotation of eQTLs



trQTL enrichment q)

2 2 7
LLL-r AN O=Z QNN r-rAr-r O~ L-JdJOoOOrr~NANN WZZorocz2a0
NEAnD>0835000olig8ooolLddoDog O
DS ENCSEEJNARELRPKDEORENED SH0Hb5283
PUN Ix Og3I¥3 B)z207 %S STRF 2z wobEZ
b = ® P ¥w g ITxOo £ ® X (2Ne) Z 0
T o T ™ (4] T [} P4 Z
E I I I
(O]
€
c
[ 1 4
‘= 3 1
C
o2 0
=
Qo 1]
5 5
)
b4

WEAK ENHANC
WEAK PROM

POLYCOMB-REPR [B|"
INSULATOR
STRONG ENHANC
ACTIVE PROM
TRANSCR ELONG

HETEROCHR

WEAK ENHANC
WEAK TRANSCR
TRANSCR ELONG

O
=z
<
I
zZ
w
[©]
=z
(e}
o
=
]

Figure S19. Functional annotation of trQTLs

Enrichment of EUR trQTL variants in functional annotations relative to a
matched null distribution for the 1st (most significant) trQTL variant as well as
2nd, 5th and 10t best variants in the Ensembl Regulatory Build and coding
annotations (a) and in chromatin states (b). The numbers above the bars denote
-log10 p-values of a Fisher test between the 1st the best eQTL and the null for
each category. Several annotations are significantly enriched for trQTLs. This
analysis is not shown for YRI due to the low number of variants.
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Figure S20. Causal eQTL variants

(From the previous page:) We estimated the probability of the best eQTL variant
being the causal regulatory variant by comparing the annotation enrichment
(relative to the null) of the best eQTLs variants of all loci to that on loci where the
p-value distribution indicates that the best eQTL variant is very likely to be
causal. (a-c) show analysis of EUR eQTLs, and the corresponding figures for YRI
eQTLs are in panels (d-e). In the majority of eQTLs the p-value difference
between the 15t and the 2" variant (Ap) is small (a,d) due to strong LD between
the variants, however, there are also large numbers of eQTLs where the 1st
variant association is orders of magnitude more significant than for the 2nd
variant, and in such cases the first variant is very likely to be the causal one. We
calculated the annotation enrichment of the 1st variant relative to the 2nd variant
for different classes of Ap (b,e), and based on the modest increase from 1-1.5
log10 Ap onwards, we chose log10 Ap >1.5 as the main limit above which we can
assume that the first variant is causal, and Ap >2.5 as a more conservative
estimate. Then, for these causal variants, we calculated the enrichment of the
best variants relative to the null, and comparing the same enrichment of all the
variants to this number (c,f) gave us an estimate of the proportion of all variants
where the 15t variant is causal, with the weighted median (horizontal line) based
on the proportion and frequency of each annotation class. Using a log10 Ap >2.5
as a more conservative estimate gave us proportions of the first variant being
causal in 34% for EUR and 41% YRI (plots similar to c and f not shown).
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Figure S21. Allele-specific binding of CTCF in eQTLs

In order to validate the functional effects of our best eQTL SNPs using additional
cellular assays, we measured allele-specific binding in Chip-seq data of CTCF
from 6 individuals, using best eQTL SNPs (a,c) as well as a matched null set of
variants (b,d) from EUR (a,b) and YRI (c,d) data, analyzing sites that were
heterozygous in these samples and covered by Chip-seq reads. We observe a
significant enrichment of allele-specific binding in eQTL sites (p=0.0020 for EUR,
0.0023 for YRI, Mann-Whitney between allelic ratios for eQTLs and null),
suggesting that these sites can indeed be causal, with a change in CTCF binding
being the putative cellular mechanism underlying the expression level change.
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Figure S22. Overlap of eQTLs with Omni 2.5M SNPs

The rank of the best Omni2.5M SNP among the significant YRI eQTL variants per
gene, in bins on the x-axis according to the total number of significant variants.
See Figure 2 for the plot of European eQTLs.
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Figure $S23. GWAS signal of eQTLs

We analyzed the overlap of GWAS SNPs and EUR eQTL signals. First, we
calculated for each GWAS variant its rank among eQTLs (a) - i.e. if the SNP is the
best associating eQTL of a gene, it gets a value of one - and this repeated for a
null distribution of variants matched to the GWAS minor allele frequencies.
GWAS variants are clearly enriched around the peak of eQTL associations
compared to the null, suggesting that eQTL variants are the causal variants for
many GWAS associations. The distribution is truncated at the rank of 50. (B)
shows the best cis-eQTL p-value of GWAS SNPs and the matched null variants
plotted as a qq-plot, indicating that GWAS variants are more likely to be eQTLs.
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Figure S24. Causal GWAS variants prediction

For the 91 GWAS eQTLs that have been assessed to share a causal variant (see
Supplementary Methods), we assessed how close the GWAS variant is to our best
EUR eQTL - the most likely causal variant - in terms of distance (a), eQTL rank
versus distance (b), and eQTL rank versus p value difference between the GWAS
SNP and the best eQTL (c). 75% of GWAS variants are >10kb away from the most
likely causal variant or region, and in the 1000 Genomes data there is a median
of 31 variants with better eQTL p-value than the GWAS variant. The correlations

rho =0.78

T
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o
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in (b) and (c) are significant with p= 4.676e-09 and p< 2.2e-16, respectively.

25




1.
141:31
EE EEE

REF/TOTAL PER INDIVIDUAL Q)
048 050 052 0.54
L L

T T T T T T T T T T T
AG GA TC CT AC CA TG GT AT TA CG GC
SNP REF-ALT

(op

008 010 012
L L L

ASE<001/BOTHALLELESSITES

ASE <0.01/ALL HET SITES
008 010 012 014 016
L L L L L

3
S

T T T T T T T T T T T T T
80 100 120 140 160 180 200 80 100 120 140 160 180 200
MEAN COVERAGE MEAN COVERAGE

&

Al e

0.4

REF_RATIO1 — REF_RATI

ASE di

ABS (
0.2
1

0.0
L

555555

SEQUENCING LABORATORY

T T T T T
20 40 60 80 100
COVERAGE

Figure $25. Quality control of ASE data

The expected allelic ratio in ASE analysis (a) is not strictly 50-50 as might be
expected for heterozygous sites - there is a slight genome-wide bias favoring the
reference allele, and there is also a nucleotide bias favoring G and C, shown in (a)
where the genome-wide allelic ratios for each individual are plotted. These ratios
are used as the expected ratio in the calculation of binomial probability of ASE as
an overall correction of these biases.

B) and c) demonstrate the effects of slight variation in genotype quality in
ASE data. Here, each dot is an individual, with median coverage of ASE sites
plotted on the x-axis, and proportion of ASE (p<0.01) on the y-axis. The general
correlation between these two is expected, due to higher power when coverage
is high. The red individuals are the lowest 25% of DNA-RNA genotype
concordance of heterozygous sites. Discordance may be due to allelic expression
(the average amount of which should, however, be similar across individuals),
and some due to false genotype calls (which may vary). Excluding sites with only
one allele seen (c) leads to more stable ASE proportions between individuals,
and for the majority of analyses, we used only such sites.

The effect of coverage of the ASE site is demonstrated in (d) using
replicate samples: difference in the allelic ratio of the same site is plotted as a
function of coverage. Consistency is good after 30-40 reads.

While ASE is less sensitive to laboratory effects than quantifications, ASE
distance (see Supplementary Methods) between individuals still shows some
laboratory effects (e).
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Figure S26. Filters for allelic mapping bias

Allelic ratio in four samples for SNPs that were kept in ASE analysis (top row)
and in SNPs that were excluded due to increased risk of mapping bias based on
simulations or genomic mapability estimates (bottom row; see Supplementary
Methods for details). The numbers denote the proportion of sites with significant
(p<0.005) ASE, showing that excluded sites have clearly elevated ASE signal that
is likely due to mapping problems. Furthermore, in the analysis, we excluded
sites with only one allele observed (REF/TOTAL < 0.02 or > 0.98), since these
sites may be false genotype calls and be actually homozygous (see Fig S25 b-c),
or have undetected mapping bias.
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Figure S27. Frequency spectrum of allele-specific transcript

structure

ASTS effect size (maximum allelic ratio distance of exons from the total ratio) as
a function of frequency of the ASTS effect in the population, calculated for sites
with >=20 ASTS measurements. This is analogous to Fig. 3b of ASE, and shows
that the majority of ASTS effects are rare in the population.
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Figure S28. Population variation in ASE

Multidimensional scaling of a matrix of allelic ratio distance between individual
pairs (see Supplementary Methods) shows a clear clustering to African and
European individuals (a). In (b), we further dissected allelic ratio distances to
differences between two haplotypes of an individual (abs(0.5-REF_RATIO)), and
allelic ratio distances for replicate samples from the same individual, two
individuals from the continent, or from a different continent.
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Figure S29. Population variation across ASE frequency

spectrum

We used ASE data to partition how much of phenotypic discordance between
two individuals come from rare and common events in the population, based on
the idea that ASE is a proxy for regulatory variation.

To this end, for each individual pair we took ASE SNPs where the
individuals are discordant (ASE p < 0.005 & ASE p > 0.1). Here, we used only
sites present in >=15 individuals in the data set sampled to a coverage of 30, and
individual pairs with >=70 sites that were measured in both. For all these sites
per individual pair, we calculated the sum of differences in allelic ratios as a
measure of total phenotypic difference. Additionally, for each site we calculated
how frequent the ASE effect (present in only one of the individuals of the pair) is
in the entire sample, which is a proxy for the frequency of the regulatory variant
driving this effect.

The plot shows the relationship between the two: the population
frequency of ASE (~frequency of the regulatory variant) on the x-axis, and the
cumulative proportion of how much of the total allelic ratio (~phenotypic effect)
difference between two individuals explained by each event. Each pair of
individuals is represented by a thin line (randomly selected 100 pairs of each
class), colors are according to whether the individuals of the pair come from
same or different continents. The thick lines represent medians. The p-value is
from a Mann-Whitney test of ASE frequencies in within-continent vs between-
continent pairs.

We can see that most differences between two individuals are caused by
regulatory effects that are rare in the population, which is consistent with the
frequency spectrum in Fig. 3b. Importantly, differences between individuals of
the same continent are relatively more often caused by rare effects. This is
consistent with what we know of population sharing of genetic variants: rare
variants are very population specific; thus a relatively larger proportion of
differences within populations are expected to be driven by rare variants,
whereas different continents differ in terms both rare and common variation and
so they can contribute more equally to individual differences.
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Figure S30. Likelihood of significant allelic effects by

annotation class

Frequency of ASE and ASTS by annotation class of the AS variant shows a clear
enrichment of allelic imbalance in loss-of-function sites. The likelihood of AS
signal is affected by the transcriptome impact (such as splicing change or NMD)
that a variant may have, and also the consequences that this has on the coverage
of the AS site, since our analysis is naturally only based on the reads that remain
in the data and cover the site in question. For example, >=16 reads of coverage
over fully intronic sites is rather unusual, and can be due to rare intron retention
effects or unannotated exons, both with unusual splicing easily leading to an
ASTS signal. The ASTS signal in the 3’ end is expected knowing the widespread
variation in 3’ ends of transcripts. Splice site variants are an interesting case: for
example, let us consider a nonreference allele in a splice acceptor site that
decreases splicing efficiency of the exon by 60%. In this situation, 60% of
nonreference transcripts would skip the exon or undergo NMD, leading to a
strong ASE signal over the splice site - however, the remaining 40% of the
nonreference reads over the splice site that we would use to calculate ASTS
would have the normal splicing pattern, without ASTS over this site.
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Figure S31. Method for mapping putative regulatory SNPs
(prSNPs) with ASE data

Differential expression of the two haplotypes of an individual, or allele-specific
expression, is believed to be often driven by the individual being heterozygous
for a regulatory variant elsewhere in the cis-regulatory region. (A) illustrates the
basic principle of the method, trying finding maximal concordance between the
allelic ratios of an aseSNP, and the genotypes of the prSNPs in the surrounding
region: for a true rSNP, we would expect heterozygote individuals to have large
deviation of the null allelic ratio of 0.5, whereas homozygotes would be expected
to have ratio close to 0.5. This situation is illustrated on the left side of (a),
whereas right side illustrates a situation with poor concordance.

To quantify the concordance, we calculated for each prSNP-aseSNP pair in
each individual i a concordance score s; according to the equations in (b), where
di = abs(0.5 - ref_count; / total_count;), separating prSNP homozygotes and
heterozygotes (blue versus red/magenta). Here, the closer s; is to 1, the better
the concordance. Having phased data, we also took allelic direction into account
in prSNP heterozygotes as a true rSNP should have one allele consistently higher
expressed: we assigned the majority allelic direction based on the data (see
Supplementary Methods section 12.3) and penalized individuals showing the
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opposite direction by assigning s; = 0 (magenta). For each prSNP-aseSNP pair, we
then calculated score s as the average of si.

Having a score s for each prSNP-aseSNP pair, we next evaluated how likely it
is to obtain such a score by random combination of the allelic ratios over this
particular prSNP-aseSNP pair - thus, we permuted the prSNP genotype labels as
many times as there are unique combinations, up to 1000 times, and recalculated
the score on each round. From this random distribution of s, we obtained an
empirical p-value for s. (C) shows that the absolute value of s is not correlated to
its p-value as it depends on genotype frequencies and aseSNP allelic ratios, and
even relatively low scores can be much higher than expected by chance. Thus, in
the selection of most likely true rSNPs from all the tested prSNPs, the absolute
value of s is not informative; we selected prSNPs that had a permuted p-value of
0 with no higher permuted scores than the observed one. Since each prSNP-
aseSNP pair has [100,1000] permutations, this corresponds to p-value
[0.01,0.001] .

One gene can have several aseSNPs that can capture the same rSNP effect
when it is driven by regulatory variant that affects both sites, or they can be
independent e.g. in the presence of splicing variation. In (d), we measured how
similar ASE signals are within the same gene in a single individual: We took a
aseSNP within an individual with significant ASE (p<0.005), and found cases
where the individual has another aseSNP in the same gene as the first one. The
mosaic plot shows the proportion of the second aseSNPs that are significant (like
the first one) and that have allelic ratio to the same direction as the first one. The
results indicate that while there is some excess of shared signal of the two
aseSNPs, the signals appear mostly independent. This is consistent with much of
ASE overlapping with allele-specific transcript structure signals (Fig 3a) as well
as high degree of independence of exon eQTL signals of the same gene (see eQTL
section and Fig S14). Consequently, trying to collapse ASE signals from the same
gene for prSNP analysis would be likely to lead to loss rather than gain of power,
and we decided to analyze aseSNPs from the same gene independently.
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Figure S32. rSNP characteristics

(A) shows the p-value distribution of all tested prSNP-aseSNP pairs (left) and of
those aseSNPs that are not in genes with an exon eQTL (right). Both distributions
show a clear enrichment of low p-values. From these data, we selected the most
likely set of regulatory SNPs (rSNPs) and a null with high p-values (see
Supplementary Methods section 12). In (b), for each aseSNP separately, we
calculated how many rSNPs we would expect to find by chance based on the p-
values of the rSNPs and the number of tested prSNPs, finding that in the vast
majority of cases we find much more than expected by chance. The numbers
denote statistics not visible in the plots: the cases where we either find no rSNPs
for an aseSNP, or that the number of rSNPs is smaller than expected by chance
(see also Table S6).

From all the rSNPs, we sampled 5 rSNPs per aseSNP to investigate their
properties. Distance of these variants from TSS is shown in (c), with a peak close
to TSS that is characteristic for cis-regulatory variants. In (d), we compare allele
frequency distributions of rSNPs, eQTLs, the null selected from nonsignificant
prSNPs, and random SNPs sampled from the genotype data. In order to make a
fair comparison, we use only rSNPs that were included in eQTL analysis (have
MAF >5% in EUR or YRI), and the plot shows the derived allele frequency in the
whole 1000 Genomes Phase 1 sample. The allele frequency spectra of significant
eQTLs and rSNPs are very similar. (E) shows the prSNP p-value for tested eQTL
SNPs, indicating the concordance of genotype-based and ASE-based detection of
regulatory effects.
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Figure S33. rSNP and eQTL annotation overlap

Enrichment of variants in functional annotations relative to a matched null
distribution for all the most significant eQTL variants (red; similarly to Fig. 2a,
S$18), and to the subset of these that are also rSNPs (magenta). A subset of (a) of
the categories with most data is shown in Fig. 3c. (A) shows Ensembl Regulatory
Build and coding annotations, and (b) chromatin states. The null is the same as
that used in eQTL analysis, matched to eQTL allele frequency and distance from
TSS. The numbers above the bars denote -logl0 p-values of a Fisher test
between the eQTL & prSNP variants and only eQTL variants. There is an
increased enrichment of eQTLs in functional elements when they are also
prSNPs.

34



Q
O

SYNONYMOUS STOP_GAINED

ASE EVENTS
3000

ASE EVENTS

20 40 60 80

1000

0
0

{ T T T T 1 { T T T T 1
00 02 04 06 0.8 1.0 00 02 04 06 0.8 1.0

NONREF/TOTAL NONREF/TOTAL

Figure S34. Nonsense-mediated decay

Alternative allele ratio in RNA-sequencing read counts for a random set of
heterozygous synonymous variants in (a) and for stop-gained variants (b), from
one random individual per site. The synonymous variants show the basic null
distribution of allelic ratios, with most sites being close to 0.5, with some
variation likely due to cis-regulatory variation. Premature stop variants,
however, show a substantial decay in the counts of the nonreference (stop)
allele, suggesting frequent nonsense-mediated decay.
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Figure S35. Splice scores

For variants overlapping an annotated splice motif, we calculated splicing scores
to predict the efficiency of splicing of the splice site. Distribution of scores for
reference and alternative alleles for donor and acceptor sites is illustrated, with
the plots showing the full distribution for donor (a) and acceptor (b) and the
same distributions with zoomed y-axis in (c) and (d). The difference between
reference and alternative allele distributions are significant for both donor and
acceptor sites (p < 2.2e-16).
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Figure S36. Data Access Schema

The figure illustrates the Geuvadis data sets that are available, all with open
access. Full links to all sites can be found in the project website
www.geuvadis.org. The main accession site to the data created and analyzed by
the Geuvadis RNA-sequencing project is EBI ArrayExpress, where the data is
stored under three accessions: E-GEUV-1 for mRNA post-QC samples used in
analyses of this paper, E-GEUV-2 for small RNA post-QC samples, and E-GEUV-3
for all the sequenced data.

1) Raw reads in the form of fastq files are stored in ENA under the accession
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ERP001942 and ERP001941, accessible also through ArrayExpress (the ENA and
FASTQ columns)

2) mRNA mapped reads are stored and accessible from EBI ArrayExpress, where
the "Processed" column contains downloadable bam files. Files of mapped small
RNA reads are not provided due to the more complex nature of mapping to
different references for different analytical purposes and the large number of
multimapping reads making file sizes very large.

3) Genotype data that have been used in Geuvadis data analysis are available
from EBI ArrayExpress site under accession E-GEUV-1, and the vcf files include
also a functional reannotation of all the variants. The original data created by
1000 Genomes Project are available in the 1000 Genomes web site.
4 and 5) Geuvadis analysis results for gene, transcript, exon and repeat
quantifications and QTLs are available from EBI ArrayExpress site under
accession E-GEUV-1, and corresponding data for miRNA is under accession E-
GEUV-2.

6) mRNA mapping results per sample down to the level of individual reads can
be visualized using Ensembl Genome Browser using the links from ArrayExpress
(the Ensembl icon)

7) Geuvadis data browser (http://www.ebi.ac.uk/Tools/geuvadis-das/) was
created specially for the Geuvadis RNA-seq project to visualize quantification
and QTL results, and allows searching by variant ID, gene and region, as well as
download of quantification and QTL data by region. Links to the archives with
raw and mapped data as well links to the analysis results and genotypes are
available from the browser as well. See also Fig. S37.

8) Original genotype data can be viewed and downloaded in 1000 Genomes
Browser: http://browser.1000genomes.org/index.html.

9) Documentation of the files and links to all the sites are in www.geuvadis.org
as well as in readme files. The project wiki in geuvadiswiki.crg.es has been made
openly accessible, and contains additional analysis results and method
descriptions.
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Figure S37. The Geuvadis Data Browser

For the visualisation of RNA-sequencing analysis we created the Geuvadis Data
Browser (www.ebi.ac.uk/Tools/geuvadis-das) for viewing and downloading

exon, transcript and miRNA quantifications as well as exon eQTLs, transcript
ratio QTLs and mirQTLs for EUR and YRI.

38



Supplementary Methods

1. Study design (Fig. S1, Table S1)

Transcriptome sequencing was performed in seven European laboratories, each
processing 48-116 randomly assigned samples. Five samples were sequenced in
replicate in each of the labs for both mRNA and miRNA, and twice at the
University of Geneva (UNIGE) for mRNA. Additionally, 168 samples, also
sequenced in other laboratories, were mRNA-sequenced at the University of
Geneva, at 2/3 of the standard coverage. Of the replicate samples, the one with
the highest coverage was used in the main analysis of unique samples.

2. RNA-sequencing data production

2.1.Cell line processing

EVB transformed lymphoblastoid cell lines (LCLs) directly from Coriell Cell
Repositories (GBR, FIN, TSI) or originally from Coriell but grown at the
University of Geneva (CEU, YRI) were shipped to ECACC (European Collection of
Cell Cultures) as live cultures, in batches of ~30 samples from Coriell
(GBR/FIN/TSI somewhat randomized) and 2 x ~90 samples (by population)
from Geneva.

In ECACC, these cell lines were cultured to approximately 1.2 x 10e8 cells.
These cultures were split to produce 8 x cell banks of the samples, and a snap
frozen pellet of 2 x 10e7 cells from a proliferating culture. The cell pellets were
shipped from ECACC to University of Geneva in three batches, the first batch
consisting of CEU/GBR/FIN/TSI samples, and the second and third batch with
YRI and the rest of CEU samples.

2.2.RNA extraction

RNA was extracted in Geneva about 14 samples at a time, first extracting 2/3 of
the first shipping batch with full randomization, then adding the second batch
and randomizing among that and the remaining 1/3 of the first batch, and finally
extracting the third batch.

Total RNA was extracted from cell pellets using the TRIzol Reagent
(Ambion). The pellets had been frozen at ECACC without any additives like
RNAlater or TRIzol. In Geneva they were thawed, 1mL of TRIzol was added in
each sample, and the samples were transferred to eppendorf tubes. The rest of
the protocol followed the manufacturer's guidelines. No DNAse treatment was
done to the RNA samples.

RNA quality was assessed by Agilent Bioanalyzer RNA 6000 Nano Kit
according to the manufacturer's instructions. RNA quantity was measured by
Qubit 2.0 (Invitrogen) using the RNA Broad range kit according to the
manufacturer's instructions.
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2.3.RNA sequencing

Each of the sequencing laboratories were sent a minimum of 4 ug of total RNA of
the samples allocated to them, and RNA Bioanalyzer was ran for 10-20% of the
RNA samples before library preparation to confirm sample quality after
shipping. No further purification steps were done to the RNA samples other than
that specified in the sequencing protocols. Library preps were done in random
order in every laboratory.

mRNA sequencing was done on the [llumina HiSeq2000 platform with 75
bp paired-end sequencing with fragment size of ~280 bp - some laboratories
sequenced 100bp reads, which were trimmed to 75bp. TruSeq RNA Sample Prep
Kit v2 (the high-throughput protocol) was used for library preparation, TruSeq
PE Cluster Kit v3 for cluster generation, and TruSeq SBS Kit v3 for sequencing.
The laboratories were allowed to choose freely how to pool the samples to get
the desired minimum of 10M mapped and properly paired read pairs from any
standard mapper, without filtering for mapping quality.

Small RNA sequencing was done on the Illumina HiSeq2000 platform with
36 bp single-end sequencing with fragment size of 145-160 bp. Some
laboratories sequenced 50bp reads which were trimmed to 36bp. TruSeq Sm
RNA Sample Prep kit was used for library preparation, TruSeq PE Cluster Kit v3
for cluster generation, and TruSeq SBS Kit v3 for sequencing. The laboratories
were allowed to choose freely how to pool the samples to get the desired
minimum of 3M total reads.

Extensive information of sample processing was collected from all the
laboratories for both mRNA and miRNAseq in order to enable control of batch
effects.

2.4.Raw data processing

Each lab submitted one demultiplexed fastq file per sample per mRNA and
miRNAseq, produced by CASAVA 1.8 or 1.8.2 allowing one mismatch in the index.
Reads failing Illumina quality filtering were removed. The fastq files are named
as: SAMPLE_ID.SeqLabNumber.M/MI_YYMMDD_Lane_Read.fastq.gz, where M/MI
stands for mRNA or miRNA sequencing, and YYMMDD is the sequencing date. All
the data were submitted and initially stored in the project ftp site. Samtools?8
was used for general data processing throughout the project.

3. Genotype data

Variant identifiers follow dbSNP v137, with the variants lacking rs-identifier
named as follows: SNPs had an identifier of type snp_chr_pos (e.g.
snp_21_357682), and indels and structural variants were of type
indel/sv:lengthl/D_chr_startpos (indel:3D_1_10523).

3.1.Variant annotation (Table S2)

The Variant Effect Predictor (VEP v2.5; http://useast.ensembl.org/info/docs/
variation/vep/vep_script.html) tool from Ensembl was modified to produce
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custom annotation tags and additional loss of function (LoF) annotations. The
additional LoF annotation was applied to variants that were annotated as
STOP_GAINED, SPLICE_DONOR_VARIANT, SPLICE_ACCEPTOR_VARIANT, and
FRAME_SHIFT and flagged if any filters failed. A LoF variant is predicted as high
confidence (HC) if there is at least one transcript that passes all filters, otherwise
it is predicted as low confidence (LC). This modified version of VEP was applied
to the 1000 Genomes Phasel data using the Gencode v12 annotation. To this, we
added information of overlap with chromatin states??, Ensembl Regulatory Build
elements, miRNA targets from TargetScan3?, and miRBase v183! mature and
hairpin miRNA loci. Annotation information is stored in the vcf file info field as
ordered lists. Detailed documentation is provided together with the vcf files.

3.2.Imputation

For 421 samples of the project, we used the 1000 Genomes Phasel release v3.
Genotype imputation was done for 42 samples from 1000 Genomes project
Phase 2 with Omni 2.5M genotype data, using the IMPUTE2 software32. As the
reference panel we used the entire Phase 1 v3 release, and for a study panel we
took Omni Shapeit haplotypes for the whole Phase 2 sample set, and extracted
our 42 samples from the imputation results. These were merged to a single vcf
file together with the Phase 1 samples.

Since IMPUTE2 did not handle multiallelic genotypes well, we kept only
biallelic genotypes for the analysis. Additionally, the genotype calls of imputed
genotypes with posterior probability <0.9 were marked as missing.

3.3. Quality control (Fig. S3)

First, we calculated an IBS matrix of genotype data of chr20, which showed clear
clustering to Phasel and Phase2 individuals (Fig. S3), even though we verified
that all variants had consistent allele frequencies. Furthermore, PCA33 showed a
clear clustering to populations, as expected. To make sure that our QTL
associations are not driven by biases from imputation or from population
structure, we included the imputation status (0|1) and principal components 1-3
for Europeans and 1-2 for Yoruba as covariates in QTL analyses.

In QTL analyses, we used variants with >5% MAF in either EUR or YRI,
which gave us 10,785,347 variants in total, of which 9,836,718 are SNPs, 945,987
are indels, and 2642 are SVs. QTL analysis was done with genotype dosage
values.

4. mRNA read mapping

We employed the JIP pipeline (Griebel & Sammeth submitted) to map RNA-Seq
reads and to quantify mRNA transcripts. For alignment to the human reference
genome sequence (GRCh37, autosomes + X + Y + M), we used the GEM mapping
suite (v1.349 which corresponds to publicly available pre-release 2)34 to first
map (max. mismatches = 4%, max. edit distance = 20%, min. decoded strata = 2
and strata after best = 1) and subsequently to split-map (max.mismatches = 4%,
Gencode v12 and de novo junctions) all reads that did not map entirely. Both
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mapping steps are repeated for reads trimmed 20 nucleotides from their 3’-end,
and then for reads trimmed 5 nucleotides from their 5’-end additionally to
earlier 3’-trimming—each time considering exclusively reads that have not been
mapped in earlier iterations. Finally, all read mappings were assessed with
respect to the mate pair information: valid mapping pairs are formed up to a
max. insert size of 100,000 bp, extension trigger = 0.999 and minimum decoded
strata = 1. The mapping pipeline and settings is described below, and can also be
found in http://github.com/gemtools, where the code as well as an example
pipeline are hosted.

The GEM output format was converted to bam format, with following mapping
quality scores and flags:
1. Matches which are unique, and do not have any subdominant match: 251
>= MAPQ >= 255, XT=U
2. Matches which are unique, and have subdominant matches but a different
score: 175 >= MAPQ >= 181, XT=U
3. Matches which are putatively unique (not unique, but distinguishable by
score): 119 >= MAPQ >= 127, XT=U
4. Matches which are a perfect tie: 78 >= MAPQ >= 90, XT=R.
Furthermore, the NM flag contains the number of total mismatches
(read1+read2). In analysis, we used reads in categories 1 and 2 and with NM<=6.

4.1. Analysis of allelic mapping bias (Fig. $26)

In RNAseq mapping, it is possible that reads from a locus with a genetic variant
map differently to the reference genome depending on whether the read carries
the reference or nonreference allele. Such allelic mapping bias can be
problematic especially in analysis of allele-specific expression (ASE) comparing
RNAseq read counts of the two alleles in heterozygous individuals. Furthermore,
also quantifications of exons or other units could be affected by mapping error -
analogously to SNPs in probes in expression array studies - although this is less
likely due to quantifications being based on a larger genomic region rather than
on a single site.

We addressed this concern by simulating RNAseq reads over all SNP and
indel variants in 1000 Genomes Phase 1 release that are polymorphic in the
populations of this study. For each locus, we created all possible 75bp reads
overlapping the site in all haplotype combinations present in the 1000 Genomes
data - reads carrying the reference allele, reads carrying the nonreference allele,
and additional sets of reads according to the haplotype phase when there were
other variants <75bp from the variant in question. The simulated reads were
constructed based on the genomic sequence without taking transcript structure
or paired-end sequencing into account due to the extremely large number of
combinations that would be created by considering these factors. We then
mapped the simulated reads to the reference genome with GEM, and calculated
for each variant site the ratio of correct mapping of reads carrying the reference
or nonreference allele.

Based on these results, we excluded from ASE and ASTS analysis
2,810,388 sites with >5% bias in simulations. Additionally, we excluded sites in
regions with <1 genomic mapability score (based on the UCSC mapability track,
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50bp segments) and sites in collapsed repeat elements3>, and altogether filtered
out approximately 12% of sites in the ASE analysis of each individual (with slight
variation according to which sites are covered by enough reads to analyze ASE;
Fig S26).

Using the results from simulations, we also analyzed the effect of
potentially biased reads on exon quantifications, observing that this had an effect
only in a very small proportion of exons, and only a handful of eQTLs out of
thousands appeared to be affected by mapping bias (Panousis et al. in
preparation; see also Fig. S17). Thus, we decided not to account for the bias in
our eQTL analysis of mRNA data. However, in small RNA sequencing the shorter
read length and higher degree of homology makes allelic mapping bias much
more likely. Thus, our small RNA reads were mapped to miRNA stemloop
sequences containing not only the standard sequences but also alternative allele
versions of all the stemloop sequences that overlap a variant (see section 6.3).
This guarantees that miRNA sequences containing nonreference alleles are not
lost in mapping, which would easily lead to false mirQTL associations.

5. mRNA quantifications

The gene annotation used in this project was Gencode v1236.

5.1.Exons

Exon quantifications were calculated for protein-coding and linc-RNA
transcripts. All overlapping exons of a gene were merged into meta-exons with
identifier of type ENSG000001.1_exon.start.pos_exon.end.pos. Read counts over
these elements were calculated without using information of read pairing, except
for excluding reads where the pairs map to two different genes. We counted a
read in an exon if either its start or end coordinate overlapped an exon. For split
reads, we counted the exon overlap of each split fragment, and added counts per
read as 1/(number of overlapping exons per gene).

5.2.Transcripts, genes, and splicing (Fig. S10)

Quantifications of transcripts and splice junctions by the Flux Capacitor
approach37 are based on the annotation-mapped genomic mappings considering
transcript structures of the Gencode transcriptome annotation: mappings of read
pairs that were completely included within the annotated exon boundaries and
paired in the expected orientation have been taken into account. Reads
belonging to single transcripts were predicted by deconvolution according to
observations of paired reads mapping across all exonic segments of a locus (see
Fig S10 of descriptive statistics of transcript quantifications). Gene
quantificatons were calculated as the sum of all transcript RPKMs per gene.
Transcript ratios were calculated as the proportion of each transcript
quantification (in RPKM) of the sum of all transcripts per gene. Annotated splice
junctions were quantified using split read information, counting the number of
reads supporting a given junction. Exon inclusion levels were calculated as the
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Percentage Splice In (PSI)3%39, defined as the ratio between reads that support
inclusion of an exon over the total inclusion plus exclusion reads.

5.3.Transcribed repeats

We quantified transcription of repeat elements using the following approach:
First, we extracted all repetitive elements from UCSC's repeat masker table, and
excluded all elements that overlapped UCSC or Gencode genes by at least one
nucleotide. This left us with 2.5M regions, in which we then counted the number
of overlapping RNA-seq reads in each region for each sample. Reads that were
partially overlapping are only counted for the part which is overlapping. Since
we observed that rRNA elements had strong differences between laboratories,
we excluded them from further analysis.

6. small RNA (sRNA) data processing

6.1.Improved miRNA gene annotations

Our annotation builds on miRBase version 1831 but with important
improvements. In the cases where only one miRNA strand was annotated, the
position and sequence of the other strand was estimated using RNA structure
prediction#0. Furthermore, for the mature and hairpin miRNAs which overlapped
SNP or indel variants that were polymorphic in our genotype data, sequences
carrying the nonreference alleles were generated and used for downstream
analyses together with the reference sequences. This is important for avoiding
allelic mapping bias that can easily occur for short sequences.

6.2.sRNA read data processing

Small RNA reads with homo-polymer and low PHRED scores were removed.
Ligation adapters were clipped using the AdRec.jar program from the seqBuster
suite#! with the following options: java -jar AdRec.jar 1 8 0.3. A custom search
subsequently clipped shorter adapters: if there were no matches to the first 8
nts, then matches to the first 7 nts of the adapter were searched in the last 7 nts
of the read, then matches of the first 6 to the last 6 positions and so on. Reads
that had no matches were retained, but not clipped. Last, reads shorter than 18
nts were discarded.

6.3.sRNA mapping and quantification

For tracing the reads to their genomic source for quality control purposes, reads
were mapped to the hg19 genome concatenated with unassembled parts of the
human genome and genomes of known human viral pathogens (available upon
demand) with this command line: bowtie -f -v 1 -a --best --strata. SRNA reads
were assigned to annotations based on the genome mappings. Annotations used
were from Gencode v83°¢ supplemented with rRNA and LINE and Alu transposon
annotations from RepBase*? and snoRNA#** and miRNA3! annotations.
Annotations were first resolved so that each nucleotide on each strand had
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exactly one annotation. In case of nucleotides with more than one annotation,
conflicts were resolved using a confidence-based floating hierarchy (as in #4):
mitochondrion > virus > miRNA > snoRNA > rRNA > tRNA > snRNA > misc_RNA >
lincRNA > processed_transcript > pseudogenes > protein_coding > LINE > Alu >
intron_coding > intron_non_coding > intergenic. Each read mapping was
weighted inversely to the number of genome mappings for the read, e.g. a read
mapping to two genomic locations would get an assigned weight of 0.5. Each
mapping was counted towards the annotation of the nucleotide in the middle of
the mapping.

miRNA quantifications for analysis were calculated as read counts using
miraligner.jar from the seqBuster suite using the following options: java -jar
miraligner.jar 1 3 1, and using the improved annotations as the reference. Reads
that mapped equally well to two or more miRNAs are counted fully towards each
miRNA.

7. RNA-seq quality control

A more detailed analysis of technical variation of this dataset can be found in ‘t
Hoen et al. (in preparation).

7.1.Outlier and laboratory effect detection (Fig. 1a, S4-6, $S8-9)

The read and gene count distribution of mRNA-seq data were very uniform (Fig.
S4). To further estimate sample quality, we calculated Spearman rank
correlation between all samples using exon counts and transcript RPKMs. From
these data, we calculated the median correlation of one sample against all the
other samples. 2 samples in mRNA data and 4 samples in miRNA data were
excluded from analysis due to low correlation with other samples. We analyzed
sample correlations for replicate samples and for the whole sample set used in
analysis.

While differences between laboratories were not nonexistent in our data
set, the analysis of replicate samples shows that this variation is less than
variation between individuals - which is already very slight. Normalization of the
quantifications further reduced laboratory effects, and in our study design we
carefully randomized the samples across laboratories to make sure that e.g.
population differences are not confounded by technical artefacts.

7.2.Sample swap and contamination analysis

Allele-specific expression (ASE) analysis of mRNA-seq data was used to detect
sample swaps, which we did not find. Based on analysis of increased
heterozygosity in ASE results and mixed expression pattern of sex chromosome
specific genes, we excluded 5 samples because of possible contamination (‘t
Hoen et al. submitted).

7.3. miRNA data quality control (Fig. 1a, S4-6, S8-9, S12)

The total small RNA read count and the number of miRNA reads were relatively
similar across samples, but the proportion of miRNA reads per sample showed
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large variation from close to 0 to 60%. This is likely caused by variation in the
library preparation step and sequencing of a large number of non-miRNA reads
in some samples. However, the number of quantified miRNAs is very uniform,
and is not correlated to the proportion of miRNA reads, and only 8 samples were
excluded due having low mapping rate, coverage, or gene count. This indicates
that while in some samples sequencing depth is lost on non-miRNA reads, this
hardly affects our miRNA detection and quantification. Notably, correlations
between miRNA samples were high, and population clustering clearly more
pronounced than clustering by laboratory even before normalization.

8. Normalization of quantifications (Fig S7-9, Table S3)

All read count quantifications were corrected for variation in sequencing depth
between samples by normalizing the reads to the median number of well-
mapped reads (45M) for mRNA, and to the median number of miRNA reads
(1.2M) for miRNA. In general, we used only elements quantified in >50% of
individuals unless mentioned otherwise (Table S3).

All expression quantifications are affected by technical noise that reduces
power, and it has been shown in many studies that correcting for such sources of
variance improves eQTL discovery dramatically. We normalized quantification
data using PEER#*>, which finds synthetic covariates from quantification data that
can then be regressed out. Correcting out synthetic covariates detected from
expression data itself naturally implies that major genome-wide biological
effects might be corrected out, which can be a problem in some study settings,
such as trans-eQTL analysis. However, our analysis of cis-eQTLs, i.e. local rather
than genome-wide effects, is unlikely to be affected by this, and hardly any cis-
eQTL signals are lost in PEER correction (data not shown). For the analysis of
mirQTL trans-effects, we also tested a more conservative normalization by
regression of only major technical covariates such as sequencing lab and GC
content, but this resulted hardly any additional discoveries and altogether much
fewer significant signals in the PEER-normalized data, suggesting low power due
to high amount of technical variation (data not shown). Altogether, we concluded
that PEER normalization was suitable for our data set and analysis, efficiently
removing technical variation and leading to no or minimal loss of biological
signals.

The PEER normalization was done for the total sample set as follows:
First, for each type of quantifications, we estimated the best number of
covariates (K) to correct: PEER was ran for a subset of the data (chr20, or chr20-
22) using K=0,1,3,5,7,10,13,15,20, and sequencing lab and population as
additional covariates, the resulting corrected quantifications were transformed
to standard normal distribution, and cis-eQTL analysis was performed for each
K. The number of genes with an eQTL (p<10e-8 and p<10e-6) was calculated,
since eQTL discovery is a good indicator of power to find biological effects. These
results can be seen in Figure S7.

Based on these results, we chose K=10 as the number of covariates to
correct for, except for transcribed repeats where we did not use PEER
correction. To normalize the final data sets, we ran PEER for 20 000
quantification units (e.g. exons) using sequencing laboratory and population as
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additional covariates and adding the mean to the model. Covariates from this
analysis were regressed out from all the quantifications, and the mean was
added to the residuals. Correlation of samples after this normalization showed
less remaining laboratory effects for mRNA data across the samples and in
replicates (Fig. S8, S9). In eQTL analysis and miRNA-mRNA correlation analysis,
these quantifications were further transformed to standard normal distribution,
in order to avoid false positive associations due to any outliers in the data.

9. mRNA variation in populations

9.1. Quantitative versus qualitative variation (Fig 1b, S11)

We estimated the contribution of alternative splicing and gene expression on the
total transcript abundance variation using approaches in Gonzales-Porta et al.
201246, Briefly, for each gene, the samples are represented in the RT space using
transcript expression levels (T=number of expressed transcripts for this gene),
from which we can calculate the total variability (Vt) in this space. Projecting the
samples in a model of constant splicing ratios gives us an estimate of expression
level variation (VIs). The ratio VIs/Vt estimate the contribution of gene
expression in the transcript abundance variability, where Vls/Vt = 1 implies that
only gene expression contributes to transcript variability, and Vls/Vt = 0 implies
that only transcript usage variation contributes to transcription variability of the
gene. In this analysis, we used only protein-coding genes expressed in at least 20
individuals per population with at least two expressed (RPKM >=0.01)
transcripts, after verifying that our results were generally robust to differences
in total gene expression levels.

We further extended this model to between-population variation.
Representing the samples in the space of the transcript expression, between-
group variation was computed removing the within-group variation from the
total variation. Then all the samples were projected on a line, which represents
the model of constant splicing ratios. The between-group variation of these
projected points was computed, and the estimator of gene expression level
variation between populations is the ratio of between-group variation of the
projected points over between- group variation of the original points. A value
close to one means that the projection did not remove variation, so gene
expression is the one mainly contributing to between-population variation.

9.2. Differentially transcribed genes (Fig. 1c, S11)

In addition to the genome-wide quantitative analysis of transcriptome variation
outlined above, we also wanted to identify genes with significantly different
expression levels and/or differential transcript structure between populations.
Only protein coding genes were used in this analysis.

We performed gene differential expression (DE) analysis using
tweeDEseq*’, a method that uses a Poisson-Tweedie family of distributions and
is well suited to compare groups with more than 15 samples. 16,583 genes with
more than 5 counts per million in at least 1 sample were analyzed in pairwise
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population comparisons. Genes with FDR < 0.05 and log2 fold change greater
than 2 were considered significant.

In order to identify genes with differential transcript structure between
populations, we used two independent methods. First, we calculated the ratio of
each transcript quantification of the total expression level of the gene, and
compared the distributions of these transcript ratios between populations by
Wilcoxon-Mann-Whitney rank sum test to identify transcripts with significantly
different relative abundances between population pairs, with p-values of the
individual comparisons were adjusted using the Benjamini-Hochberg FDR
method. Genes with differential transcript usage were then obtained by mapping
those transcripts to the associated gene ids (see Fig. 1c for results). As a second
method we used DEXSeq 48 that measures differences in exon usage rather than
whole transcripts - thus verifying that any bias in transcript quantifications is
not affecting our analysis (see Fig S11 for results).

10. miRNA effects on the transcriptome

10.1. miRNA family and target definition

In the analysis of association of miRNA-mRNA quantifications we used 449
samples with both miRNA and mRNA expression data. For defining miRNA-
targets we used the TargetScan version 5.2 predictions.3? Specifically, we
downloaded the seed families of all known miRNAs conserved in vertebrates or
mammals, and the corresponding conserved target sites
(http://www.targetscan.org/). The target sites were lifted from REFSEQ
annotations by mapping the 3'UTR sequences to the hgl9 genome and
intersecting the coordinates with our merged exon annotations (see mRNA
Quantifications). The validity of the lift was confirmed at the sequence level by
matching the seed sites of targets with the reverse complement of the miRNA
seeds. For quantifying miRNA seed expression, we summed up read counts for
all miRNAs with the same TargetScan seed sequences. E.g. the expression of the
miR-141/200a seed was found by summing the read counts from hsa-miR-141-
3p and hsa-miR-200a-3p. For mRNA expression data, we used the count data for
the exon containing the predicted miRNA binding site. Both microRNA and
mRNA expression data were corrected for hidden confounding factors with PEER
and the resulting residuals were transformed to standard normal (see
Normalization of quatifications). The final analysis included 100 microRNA-
families and 126,698 exons.

10.2. Integrated analysis of mina and mRNA expression (Fig. 1d,
Table S4)

The integrated analysis is based on the globaltest 4° and is further described in
(Iterson et al., Integrated analysis of microRNA and mRNA expression: adding
biological significance to microRNA target predictions, submitted). Previously, it
was shown that a global test-based integration model is robust and sensitive to
identify sets of genes whose expression is affected by copy number®C. In this
context, the globaltest was used for testing of the association of a group of genes
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- the predicted targets - with a microRNA expression profile. It is specifically
designed for the situation of more samples then genes (p>>n). Furthermore, the
test overcomes the large multiple testing problem that arises when each target is
tested individually for association with a microRNA expression profile. P-values
for a set of target mRNAs sharing a predicted miRNA seed sequence were
obtained by 100,000 permutations of the sample labels and corrected for
multiple testing using Holm’s procedure. Within each set of predicted mRNA
targets, P-values for individual associations between expression of predicted
mRNA targets and miRNA expression levels were corrected by the Bonferroni
multiple testing procedure.

A useful interpretation of the global test is as a sum of squared
covariances between a set of predictors Xnxp, and responses, ynx1 (see section 5 of
49). Consider the sample covariance, ryx between a miRNA expression profile ynx1
and a single target xnx1 given by:

2\ (v—%
Ppe = = S (g — o) (a0 — B) = EF0) =F0),

where bar y, and bar x, denote the sample means of miRNA and mRNA
expression profiles, bar y, and bar x, are vectorized versions (note that ryx = rxy).
For multiple mRNA profiles X nx1 the px1 vector of the sample covariances, ryx
can be expressed as:

n — Y -X)T(y-y
ryx = i Yo (s — ) (X — Xj) = E2LY),

Note that this expression is valid even when the number of targets exceeds the
number of samples p > n, and again rTyx = rxy. Now the global test test-statistics,
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is proportional to the squared sample covariance.

10.3. Trans-eQTL effects of cis-mirQTLs (Fig. S13)

Variants that associate to miRNA expression levels (mirQTLs) can potentially be
trans-eQTLs for the target genes of these miRNAs. This effect was sought using
the European data set, using QTL mapping methods outlined in section 11. The
hypothesis was that a mirQTL variant should have a stronger trans-eQTL effect
on the predicted targets of the miRNA than on non-targets - note that testing this
for targets observed in this data would build a circular argument. This analysis is
likely to be conservative since it relies on the accuracy of target predictions.

We selected all miRNA-target exon pairs based on the TargetScan
predictions (see above). From these, we selected only those exons that were
included in eQTL analysis (expressed in >90% samples), and only the 60 miRNAs
that had a mirQTL. This left us with 11 miRNAs to test. For the best-associating
variant of each of these mirQTLs, we collected trans association p-values (>5MB
from the site) with exons that have a target site of the miRNA affected by the
mirQTL (6242 variant-exon pairs in total, 125-1003 exons per mirQTL), and as a
null with exons not in genes that have a target site of the miRNA with an mirQTL
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(9491 variant-exon pairs in total, 134-187 exons per eQTL). We compared these
p-value distributions for negative and positive associations separately, i.e. where
the cis-mirQTL allele increasing the miRNA expression has negative or positive
correlation to the exon.

11. Transcriptome QTL analysis

11.1. Transcriptome QTL mapping with linear regression (Table 1)

The details of sample sets, data filtering and normalization are discussed
above. Briefly, we did transcriptome QTL mapping separately for European
(n=373) and Yoruba (n=89) populations. We used genetic variants with
MAF>5% in either EUR or YRI <IMB from transcription start site, with
covariates of imputation status (0|1), PCs 1-3 for Europeans and PCs 1-2 for
Yoruba. For the different quantitative phenotypes, we used normalized
quantification units (e.g. exons) with quantification >0 in >90% of all the
individuals unless mentioned otherwise (Table S3). Only autosomes were
analyzed.

QTLs were mapped using a linear model implemented in Matrix eQTL>?, and
FDR was estimated by permutations as follows: For exon eQTLs, we permuted
the quantifications of each exon 2000 times, keeping the best p-value per exon
from each round. From these data, we adjusted the FDR to 5% according to the
most stringent exon of each gene, having a separate p-value threshold for each
gene. For miRNAs and RNA editing sites, we ran 8000 permutations for each
quantification unit, and calculated a p-value for each of them. For transcript ratio
QTLs, we permuted ratios of all transcripts of randomly selected 1000 genes
3000 times and calculated a genome-wide p-value limit based on the median of
the most stringent transcript per gene. For gene and and repeat eQTLs, we
permuted randomly selected 1000 genes and 500 repeats, and used their median
as a genome-wide p-value limit.

11.2. Transcript ratio QTL effects (Fig. 2b)

For the transcript ratio QTLs (trQTLs), we sought to characterize the QTL effect
on transcript usage. For each trQTL gene, we identified the transcript with
highest association and the transcript with most negatively correlated
quantifications to this. Given the annotation of these two transcripts,
AStalavista52>3 was used to classify the events for each trQTL.

11.3. Independence of QTLs (Fig. S14-15)

To estimate independent QTL signals for the same gene, we used an approach
where the linear regression QTL analysis is reran using a previous association
signal as a covariate - in cases where a second variant is not the same and not
linked to the first one, an association signal for the gene should remain.

We applied this to estimate the number of exons with independent eQTLs
from the best association for all the exons of the gene. Additionally, for 279 genes
that had both a significant transcript ratio (trQTL) and a gene eQTL, we reran the
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eQTL analysis with the best trQTL variant as a covariate to estimate whether the
trQTL signal is driving the eQTL association as well.

11.4. Null variant distribution

To compare QTL variants to a null distribution of similar variants but without
regulatory association, we sampled genetic variants in cis-regions of genes
expressed in our data set based on the QTL variant distributions of distance from
the gene (taking upstream and downstream distance into account) and minor
allele frequency. We also tried matching for the coding/noncoding status of the
variants, but did not use this in the final analysis since it did not appear to have a
major impact in the results.

11.5. Functional overlap of eQTLs (Fig. 2a, S17-21)

We analyzed the overlap of eQTL variants as well as the matched null variants in
different functional categories according to our functional annotation of the
variants, as described in section 3.1. Furthermore, we linked our eQTL findings
to two earlier data sets of functional genomics data:

First, we analyzed DNasel sensitivity QTLs (dsQTLs) >4 from their “long”
list of dsQTLs, comparing the intersection of these variants with our best eQTLs
per gene (based on p-value) and with the null set of variants matched to eQTL
properties (see above).

Second, we analyzed allele-specific binding in CTCF. Raw ChIP-seq data
for CTCF binding in two parent-offspring trios from the 1000 Genomes pilot
project>> was obtained from McDaniell et al.>¢. All subsequent CTCF and ChIP-seq
related methods are described in detail in Kilpinen et al. submitted. Briefly, 36 bp
single-end reads were mapped against the hg19 build of the human reference
genome using BWAS57, and reads for biological replicates were merged after
mapping. For peak calling, final mapped reads (MAPQ>=10) from the six trio
individuals (NA12878, NA12891, NA12892, NA19238, NA19239, and NA19240)
were pooled, and peaks called from this metasample using HOMERS®8, excluding
duplicate reads. Called peaks were extended to the expected fragment length of
200 bp. Allele-specific (AS) analysis of CTCF binding was based on binomial
testing of allelic ratios over heterozygous SNP sites of each individual, similarly
to ASE analysis described in section 12.1. We required both alleles to be
observed in the data, a minimum coverage of 10 reads per site, included only
SNP sites located within CTCF metasample peaks, and filtered SNPs with
unreliable mapping as in section 12.1. We also applied two simulation-based
filtering steps to exclude individual SNP with low complexity library artifacts
(Waszak et al. submitted). From these data, we extracted the sites that were our
top eQTLs, or part of the matched null variants, and compared the signal of
allele-specific binding.

11.6. Causal regulatory variant estimation (Fig. S20)

We estimated the probability of the best associating EUR and YRI eQTL variants
being the causal regulatory variants by comparing the annotation enrichment of
all loci to enrichment in those that are very likely to be causal. Specifically, we
first calculated the annotation enrichment cany of the best eQTLs relative to the
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matched null across all eQTL loci, separately for each annotation class y. Then,
we defined a subset of eQTLs where the best eQTL is likely to be causal: we
binned eQTLs according to -log10 p-value difference between the first and the
second variant (Ap), hypothesizing that for very large Ap, the first variant can be
safely declared as the causal variant. To determine the Ap threshold where this
point is reached, we calculated the annotation enrichment between the 1st and
the 2nd variant by for eQTLs in each Ap bin. In both EUR and YRI, by saturates at
Ap = 1.5, similarly in all annotation categories; thus, we reasoned that eQTLs
with Ap>1.5 can be used to estimate the amount of annotation enrichment cCcausal,y
for the eQTLs where the best variant is causal. Finally, from these data, we
calculated the proportion of all eQTL loci where the 15t variant is causal as py =

(Ca”'y - 1) / (Ccausal,y - 1)

11.7. GWAS overlap of eQTLs (Fig. $23, S24, 2d, Table S5)

We first estimated a simple overlap with exon eQTL variants and 6473 published
GWAS SNPs 59 that were part of the 1000 Genomes Phase 1 data set. As a null, we
collected 14 000 variants matched to the minor allele frequency spectrum of the
GWAS variants. To estimate whether the GWAS overlap is particularly
pronounced in the top eQTLs which would be expected if the causal variant is the
same, for each GWAS variant (and the null set) that overlapped significant
eQTLs, we calculated the highest eQTL rank.

The large number of significant eQTL variants and GWAS variants gives a
large overlap even under the null, and with genome sequencing data we are
testing a very different set of variants than the GWAS studies. This makes it
challenging to identify those GWAS SNPs that are truly driven by an eQTL signal.
To this end, we used a published dataset of 1213 GWAS SNPs that have been
statistically shown by the RTC method to be likely to tag the same causal variant
as an eQTL signal®%61, From these data, we extracted 91 GWAS-eQTL SNPs where
both the original GWAS variant and the eQTL variant were found in our data, and
the recombination interval containing the original eQTL and the GWAS SNP
contains a significant eQTL in our EUR data that is the strongest association for
that gene. For these GWAS variants, we report the top eQTL variants in our study
as putative causal GWAS variants (Table S5).

12. Allele-specific analysis

12.1. Allele-Specific Expression (ASE) analysis (Fig. 3, S2, S25-26, S28-
30)

Allele-specific expression analysis was based on binomial testing of each allelic
ratio of heterozygous sites within each individual. First, we excluded sites that
are susceptible to allelic mapping bias: 1) sites with 50bp mapability < 1 based
on the UCSC mapability track, implying that the 50bp flanking region of the site is
non-unique in the genome, and 2) simulated RNA-seq reads overlapping the site
show >5% difference in the mapping of reads that carry the reference or non-
reference allele (Fig S26; see also section 4.1). In all the analyses, we only used
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uniquely mapping reads (mapping quality >150), NM>=6, and sites with base
quality >10.

Next, we calculated the expected reference allele ratio for each individual
by summing up reads across all sites separately for each SNP allele combination
after down-sampling reads of sites in the top 25t coverage percentile in order to
avoid the highest covered sites having a disproportionally large effect on the
ratios. These expected REF/TOTAL ratios correct for any remaining genome-
wide mapping bias as well as GC bias in each individual (Fig. S25).

Finally, for all the sites covered by >=8 reads in each individual, we
calculated a binomial test of the REF/NONREF allele counts, using the expected
ratio described above. Except for the NMD analysis (see below), we used only
sites with >=16 reads, and sites where both alleles are observed in RNA-
sequencing data in order to verify that the genotype is a true heterozygote (Fig.
S25).

In many analyses, differing coverage between sites creates noise due to
difference in power to call ASE. To correct for this, in many analyses we used
only sites with >=30 reads (Fig. S25), and sampled all sites to exactly 30 reads. In
a further analysis of ASE differences between individuals, we calculated allelic
expression distances between all sample pairs as the median of absolute
REF/TOTAL ratio differences of all the shared heterozygous sites between
individuals after sampling the reads to 30.

12.2. Allele-Specific Transcript Structure (ASTS) analysis (Fig. 3, S2,
$27,S30)

Allele-specific transcript structure (ASTS) is a novel sister method of ASE, and
aims at detecting differences in transcripts between the two haplotypes of an
individual. As in ASE, we look at reads overlapping heterozygous coding sites,
and the allele of this site in the RNAseq data tells the haplotype origin of each
read fragment. The distribution of the reads to exons is then quantified.

For every sample, we first retrieved all heterozygous sites that are
covered by >= 20 RNAseq reads, after mapability filter as in ASE analysis. Using
the pysam package (http://code.google.com/p/pysam/), we scanned the bam
file to extract all the reads and their mates that overlap the site, separated them
to reads with REF or ALT allele, and printed out a pseudo-sam file that contains
information of which SNP each read overlaps, and if it carries the REF or
NONREEF allele.

For this file, we ran our standard exon quantification, and calculated the
number of REF and ALT read overlaps in all the exons. We kept only exons with
>=10 reads of each allele, and required a total of >=20 REF and NONREF reads in
the remaining exons. We used Fisher test to estimate whether the read counts in
exons are different for REF and NONREF reads. For each site, we calculated a
quantitative measure analogous to ASE allelic ratio (maximum imbalance across
all exons of a site compared to the total REF/NONREF ratio).

12.3. Mapping regulatory variants with ASE data: Method (Fig. S31)

Differential expression of the two haplotypes of an individual, or allele-specific
expression, is believed to be often driven by the individual being heterozygous
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for a regulatory variant elsewhere in the cis-regulatory region (Fig. S2). Here, we
developed a novel method to map regulatory variants, rSNPs (SNP used for
brevity; these variants can be of other types as well) that affect allelic ratios, with
significant improvements to the basic principle that we published before 62, In
these analyses the genotype of the variant (aseSNP) over which ASE is calculated
is always heterozygous since otherwise ASE cannot be measured; thus all the
references to the genotype in the following refer to the putative regulatory
variant (prSNP).

The method is based on finding maximal concordance between the allelic
ratios of an aseSNP, and the genotypes of the prSNPs in the surrounding region:
for a true rSNP, we would expect heterozygote individuals to have large
deviation of the null allelic ratio of 0.5, whereas homozygotes would be expected
to have ratio close to 0.5. Specifically, for each aseSNP, we define r; = ref_count; /
total_count; as the reference allele ratio in individual i , and di = abs(0.5 - i) as
the distance of the ratio from 0.5. For each individual, for each prSNP-aseSNP
pair we can calculate a concordance score si, with sinet = di2/0.52, and Sihom = 1 -
di2/0.52 (Fig. S31). Having phased data, we also took allelic direction into account
as follows: for double heterozygotes, we calculate which prSNP allele is linked to
the higher expressed aseSNP allele, and from the individuals with significant ASE
(p<0.005), we calculated which direction is most commonly observed, and assign
this as the majority direction. If there were no double heterozygotes with
significant ASE, we used the direction of the individual with the lowest ASE p-
value as the majority direction. For every sinet: individual that has the opposite
direction, we assigned sinet = 0, thus penalizing switches in allelic direction.

For each prSNP-aseSNP pair, we calculated score s as the average of s;. We
evaluated the significance of s by permuting the genotypes of the prSNPs and
recalculating the scores. We did as many permutations as we have unique
genotype combinations, here requiring at least 100 and up to 1000
permutations, thus obtaining an empirical p-value for s. The absolute value of s
([0,1]) is not correlated to its p-value (Fig S31).

12.4. Mapping regulatory variants with ASE data: Analysis (Fig. 3,
$32, S33)

We applied the prSNP method outlined above to our data of allele-specific
expression. We filtered the data stringently to use only high-coverage aseSNPs
sampled to 30 reads in each individual, requiring >=80 individuals with ASE data
of which >1 significant ASE (p<0.005). Since allelic ratio is a comparison within
an individual rather than a quantitative measurement in the population, this
analysis is insensitive to population stratification, and we analyze all our samples
together. We tested all prSNPs within 100 kb from the TSS of the gene of the
aseSNP From these data, we assigned as likely rSNPs all the variants with no
permuted values higher than the observed one, i.e. p < 0.01 to p<0.001 given our
100-1000 permutations. For each aseSNP separately, we calculated how many
rSNPs we would expect to find by chance based on the p-values of the rSNPs and
the number of tested prSNPs, and only when the observed number is greater
than the expected we count the aseSNP as one with an rSNP signal. Furthermore,
to analyze the properties of rSNPs, we sampled 5 rSNPs per aseSNP (or all if <5).
The results for taking only a single variant were similar (data not shown) but we
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chose to use multiple variants per locus since our empirical p-values do not
allow good ranking of rSNPs to obtain the best variant as in eQTL analysis. To
compare these variants to a null set of nonsignificant SNPs, we sampled similar
numbers of SNPs with p>0.2.

13. Loss-of-function analysis

13.1. Nonsense-mediated decay (Fig. 4, S30, S34)

To estimate the signal of nonsense-mediated decay (NMD) in premature stop
variants, we quantified ASE using allelic read count data from individuals who
are heterozygous for a premature stop variant, compared to other individuals
where we have ASE data from the same gene as the ASE variant. We applied an
EM algorithm to fit a mixture of binomial distributions where number of
components, k, was set to 2, and no prior information was given for the binomial
distribution parameters. The EM algorithm was run until epsilon < 1e-8; final
number of iterations = 20. This was ran for all variants and for rare (minor allele
counts = 1-10 ) premature stop variants.

13.2. Splice scores (Fig. 4, S35)

For the 1000 Genomes Phase 1 SNPs and indels that modify the splice site motif,
we computed log-odd scores of variant effect in splice motifs employing the 1st
order Markov Models for splice donor and acceptor sites of human U2-
dependent introns from the gene prediction program GenelD®3. The scoring has
been applied to the ~478,000 splice sites currently included in the Gencode v12
reference annotation.

Splice site variants have been inferred from the 1000 relevant for the
Markov model.

14. Data access

14.1. Data files (Fig. S36)

The Geuvadis data is openly accessible, and full links to all sites can be found in
the project website www.geuvadis.org. Detailed documentation of the methods
can be found from this paper, and in the readme files. Additional analysis results
can be found in the openly accessible project wiki in geuvadiswiki.crg.es

The main accession site to the data created and analyzed by the Geuvadis
RNA-sequencing project is EBI ArrayExpress, where the data is stored under
three accessions: E-GEUV-1 for mRNA post-QC samples used in analyses of this
paper, E-GEUV-2 for small RNA post-QC samples, and E-GEUV-3 for all the
sequenced data.

Raw reads in the form of fastq files are stored in ENA under the accession
ERP001942 and ERP001941, accessible also through ArrayExpress. mRNA
mapped reads are stored and accessible from EBI ArrayExpress, and the bam
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files can be viewed in the Ensembl browser through links in ArrayExpress. Files
of mapped small RNA reads are not provided due to the more complex nature of
mapping to different references for different analytical purposes and the large
number of multimapping reads making file sizes very large.

Genotype data that have been used in Geuvadis data analysis are available
from EBI ArrayExpress site under accession E-GEUV-1. The original data created
by 1000 Genomes Project are available in the 1000 Genomes web site.

Geuvadis analysis results for gene, transcript, exon and repeat
quantifications and QTLs are available from EBI ArrayExpress site under
accession E-GEUV-1, and corresponding data for miRNA is under accession E-
GEUV-2.

14.2. The Geuvadis Data Browser (Fig. $S37)

For the visualisation of RNA-sequencing analysis we created the Geuvadis Data
Browser (www.ebi.ac.uk/Tools/geuvadis-das). It is powered by the Genoverse
browsing engine running HTML5 and Javascript and co-developed by the
Ensembl and DECIPHER projects. The back-end for the browser is the EBI data
sources providing the Geuvadis analysis data in real-time.

The Geuvadis RNA-sequencing analysis results consist of following tracks:

* EUR and YRI exon eQTLs and quantifications

* EUR and YRI transcript quantifications and transcript ratio QTLs,

* EUR and YRI mirQTLs and quantifications

Quantification tracks show the population minimum, average and
maximum values of raw counts normalised by library size and element lengths,
very similar to FPKM normalization. By clicking on the element of interest it is
possible view information about each element: description, scoring information
and links to other relevant data sources, for instance Ensembl Genome Browser.

QTL tracks show SNPs and indels associated with functional effects. In a
similar way a click on an element of interest will provide additional information
including all linked effect elements associated with eQTL along with related p-
values.

Tracks at the top of the Geuvadis Data Browser provide gene and
transcript element annotations. These tracks are based on Ensembl latest release
of human genome GRCh37 and are given for the reference purposes. It is
possible to search for genes, variants or locations, and a region selector tool
allows viewing the underlying data values of the selected, which can then be
saved by the user.
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Supplementary Tables

QC-passed
mRNA miRNA
Total
1000G 1000G
Pop Full name sequenced | Total Phase1 Total Phase1
samples
Utah residents (CEPH) with
CEU Northern and Western | 92 91 78 87 74
European ancestry
FIN Finnish from Finland 95 95 89 93 87
GBR British from England and 96 94 85 94 84
Scotland
TSI Toscani in ltalia 93 93 92 89 88
YRI Yoruba in Ibadan, Nigeria 89 89 77 89 77
TOT Total 465 462 | 421 452 410

Table S1. Samples

Numbers of sequenced individuals. Replicate samples are not included in the

counts.
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Coding annotation (nonredundant

hierarchy) Variants
SPLICE_ DONOR_VARIANT 4036
SPLICE_ ACCEPTOR_VARIANT 2977
STOP_GAINED 6483
FRAMESHIFT_VARIANT 1186
STOP_LOST 581
INITIATOR_CODON_CHANGE 1034
INFRAME_CODON_GAIN 193
INFRAME_CODON_LOSS 531
NON_SYNONYMOUS_CODON 305959
SPLICE_REGION_VARIANT 53901
INCOMPLETE_TERMINAL_CODON_VARIANT | 29
SYNONYMOUS_CODON 197584
STOP_RETAINED_VARIANT 253
CODING_SEQUENCE_VARIANT 31
COMPLEX_CHANGE_IN_TRANSCRIPT 97
MATURE_MIRNA_VARIANT 432
5_PRIME_UTR_VARIANT 101725
3_PRIME_UTR_VARIANT 381972
INTRON_VARIANT 19734371
NC_TRANSCRIPT_VARIANT 190673
Noncoding annotation (redundant) Variants
MIRNA_TARGET 3324
TFMOTIF 50282
REG_FEATURE 7325520
ACTIVE_CHROM 38137117
MIRNA_MATURE 652
MIRNA_PRECURSOR 1290
NOVEL_SPLICE 431

No annotation 1027762

Table S2. Variant annotations

Numbers of variants in annotation categories.
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in >50% of | In QTL

samples analysis
Genes 16433 13703
Transcripts 67603 24109
Exons 148001 122893
Splice junctions 132647 NA
Transcribed repeats 47437 43875
miRNAs 715 644

Table S3. Quantifications

Numbers of quantified transcriptome features. Gene, transcript, exon and
annotated splice junction counts are from protein-coding and lincRNA genes. All
eQTL counts are for autosomal genes, with a filter of quantification in >90% of
samples for genes, exons, transcripts, and >50% for miRNAs and transcribed
repetitive elements.

Tables S4-S5 are available as separate files:

Table S4. Associated miRNA-mRNA pairs (legend)
List of 36 significant (P<0.001, Holm) miRNA families and their associated mRNA
targets (P<0.05, Bonferroni). The column descriptions are:

* Exon (exon identifier consisting of Ensembl gene id, chrom location, start
and end exon containing the predicted microRNA binding site; exons are
unions of all overlapping exons of the same gene)

*  microRNA family: family of microRNAs with identical seed-regions

* P-value (of set): P-value indicating the strength of association of the
microRNA expression profile with the set of predicted targets

* P-value (target): P-value indicating the target’s individual contribution to
the overall strength of association to the set

* Association: '0' indicates negative association of the microRNA expression
profile with the predicted targets and '1' positive association

* Entrez Gene: Entrez gene identifier

* Gene Symbol: HGNC gene symbol

Table S5. Predicted causal GWAS variants (legend)

GWAS variants that have a signal of a shared causal variant with an eQTL (see
Supplementary Methods), and the eQTL p-values of the top eQTL variants and
the GWAS SNP.

62



All genes Without eQTL genes

Total Passed 9% of total | Total Passed %o of total
Genes 2766 2674 96.7% 637 611 95.9%
aseSNPs | 5479 5216 95.2% 987 925 93.7%
prSNPs 3044486 224640 7.4% 815659 37563 4.6%
prSNP-
aseSNP 8677881 345750 4.0% 1351591 39421 2.9%

Table S6. Regulatory SNPs mapped using ASE data

Statistics of putative regulatory SNPs mapped based on ASE data, grouped by
genes where the tested aseSNPs are located, tested aseSNPs, nonredundant
prSNPs (putative regulatory SNPs), and finally all tested prSNP-aseSNP pairs. We
show the statistics for all the data, and only for genes where no eQTLs were
found in this study.

All rSNP-aseSNP pairs where no higher permutated scores were found are
considered to be likely true rSNPs (empirical p<0.01 to p<0.001). For aseSNPs,
the number here indicates the number of aseSNPs where the number of passed
rSNPs is >0 and bigger than what is expected by chance, given the p-values of the
passed rSNPs and the the total number of tested prSNPs for that aseSNP. For
genes, we give the number of genes with any passed aseSNPs.
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