Pipeline: quantitative RNA-Seq

Mapping

GEM (GEnome Multitool) split-/mapper (http://gemlibrary.sourceforge.net)

Santiago Marco

Leonor Frias

Paolo Ribeca

- exhaustive mapping up to the number of mismatches
- quality mapping: downweight mismatches at positions with bad qualities (quality score)

Example:

Mapping

Mapping Outcome:

Different Mapping Classes:

Unique: Reads that map uniquely (Strata 1:0:0, 0:1:0)

Multi: Reads that map multiple times in the reference

Ambiguous: Reads that map unique, but only in the most permissive Stratum (0:0:1)

Redundant: Reads that have redundant hits in the reference, usually above the limit the output

every hit's position (e.g., 14:23:58)

Unmapped: Reads that won't map to the given reference, with the given set of parameters

Split-Mapping

- match substrings of the read to the genomic sequence (expensive!)
- in RNA-Seq split-maps correspond (mainly) to the splice-junctions
- Splice Site consensus can be used to "guide" split-mapping

Usually only ~10% of the mapped reads are split-maps, but for some applications they carry ~90% of information!

Trimming

- nucleotides at the end tend to accumulate more mismatches
- multiple rounds of split-/mapping with increasing trimming steps
- for Geuvadis: entire reads (76nt), quality trimming, trim-to-50nt (trim-to-30nt)
- BAM files contain additionally the information about (genomic) pairing

Geuvadis: Mapping Success of the Sandbox Data across the 7 Institutes

- Approach maps >95% of the data in most datasets
- Marginal variations between samples/institutes
- No dominant effect of the sample in the Sandbox Data, some samples support an institute-trend

Geuvadis: Mapping Success of All Datasets by Institution

All Datasets of every Institute (unequal sets)

Sandbox Data (distributed to all)

Differences: sample, number of samples (> 2-fold), experimental influences, ...

Contamination by EBV

- Virus used to transfect samples, virus load can be differentially high in the cells at the time point of RNA extraction
- Does the reads that origin from the virus falsify the mappings?

			first second	
Sample	hu.uniq-76	eb.uniq-76	hu.uniq-76	eb.uniq-76
HG00355	60,803,244	320,980	60,803,217	320,304
NA06986	52,080,577	125,951	52,080,552	125,378

~0.00004% of the human unique mappings (27, respectively 5) are not unique anymore

Deconvolution

Splice Graph + Reads = Flow Network

Annotation mapping

exon length

Superimpose reference annotation to genomic mappings

Flow vs. Flux R,C A,B,C A,B,C Readcount along

Flow networks

transportation problem
bipartite matching
A,B,C assignment problem
transportation problem
genomic assembly
(repeats)

Inverse Transportation Problem, Flow Network Stabilizes Noise

Flux Capacitor: Algorithm Outline

edge ▶ poses the constraint:

 $flux_A + flux_C + /- error_{cov} = coverage$ respectively

 $flow_A + flow_C + /- error_{reads} = readcount$

- → set of constraints across network
- → solve as a linear program, OF: *minimize error*
- \longrightarrow output the predicted expressions $flux_X$ resp. $flow_X$

flux_X:= coverage [reads/nt]
 across whole transcript X

flow_X:= expected number of reads
 sampled from X
 between an
□

$$= \int_{\mathbf{P}} p_{\mathbf{X}}(x) \, \mathrm{d}x$$

Normalization: Straightforward

The **RPKM** value [Ali & Co 2008] raw expression value Reads Fragmentation-Per Kilo-Base **Normalization** per **M**illion mapped Reads experiment size Experiment 2 Exp.1 Variations: RPK, FPKM, ...

Normalization of Distribution

Normalization of the Distribution: e.g., Quantile Normalization, etc.

(this is NO Geuvadis Data)

Normalization to compare Distribution

(this is also NO Geuvadis Data)

Normalization to compare Distribution

(this is also NO Geuvadis Data)

Quantification of other Elements

Extrapolation of Transcript RPKM alternatively to Re-quantification by complementary methods

unique boundaries *vs.* genomic overlap

vs.
genomic loci
(hybrid transcripts,
nc transcripts)

AStalavista [Sylvain & Micha, 2007-2009]

Sylvain Foissac

Comparison of Expression Values

- -Different approaches depending on question / element that is compared
- Some Statistics do not require (much) a priori normalization (e.g., comparison of same element in different states)
- Here, comparison of Gene Expression Landscape by Pearson coefficients

(again, this is NO Geuvadis Data)

Acknowledgements