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Mapping

- GEM (GEnome Multitool) split-/mapper (http://gemlibrary.sourceforge.net)
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- exhaustive mapping up to the number of mismatches

- quality mapping: downweight mismatches at positions with bad qualities (quality score)

Example:

BILLIEHOLIDAY 0008:1:11:13870:15798#0/1
AAAACTAATAACTTAAAACTGCCACACNCAAAAAAGAAAACCAAAGTGGTCCACAAAACATTCTCCTTTCCTTCTG
hhhhhhgghhhhhhdhhhhhhhhhhffBfffffffhhhhhhhghhhdhhhhhhfhhhhhhhfhehhhhhhhhhggh

0:4:4:3
chr6:F74227323G28@2/1,chr7:F22550021G28@2/1,chr9:R135896396G28@2/1,chr13:R96271784A28@2/1,

chr5:F14651837T27G28@40/2,chrl12:F8233706G28<
+2>43@2/1,chr12:F19608973G26G28@40/2,chrl10:R129322971T27G28@40/2



Mapping

Mapping Outcome:

K562Bio1N1.1
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Different Mapping Classes:

Unique: Reads that map uniquely (Strata 1:0:0, 0:1:0)

Multi: Reads that map multiple times in the reference

Ambiguous: Reads that map unique, but only in the most permissive Stratum (0:0:1)

Redundant: Reads that have redundant hits in the reference, usually above the limit the output
every hit’s position (e.g., 14:23:58)

Unmapped: Reads that won’t map to the given reference, with the given set of parameters



Split-Mapping
- match substrings of the read to the genomic sequence (expensive!)

- in RNA-Seq split-maps correspond (mainly) to the splice-junctions

- Splice Site consensus can be used to “guide” split-mapping
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Usually only ~10% of the mapped reads are split-maps,
but for some appications they carry ~90% of information!
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Position

- nucleotides at the end tend to accumulate more mismatches
- multiple rounds of split-/mapping with increasing trimming steps
- for Geuvadis: entire reads (76nt), quality trimming, trim-to-50nt (trim-to-30nt )

- BAM files contain additionally the information about (genomic) pairing



Unmapped %

Geuvadis: Mapping Success of the
Sandbox Data across the 7 Institutes
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Unmapped %

All Datasets of every Institute (unequal sets)

—_—

Differences: sample, number of samples (> 2-fold), experimental influences, ...

Institutes

Unmapped %

Geuvadis: Mapping Success of All
Datasets by Institution

Sandbox Data (distributed to all)
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— NA20527

Institutes




Contamination by EBV

- Virus used to transfect samples, virus load can be differentially high in the cells at the

time point of RNA extraction

- Does the reads that origin from the virus falsify the mappings?

HGO00355
NAO6986

first = second

hu.unig-76 eb.uniq-76 hu.uniq-76 | eb.unig-76

60,803,244
52,080,577

320,980
125,951

60,803,217 320,304
52,080,552 125,378

~0.00004% of the human unique mappings
(27, respectively 5) are not unique anymore
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Splice Graph + Reads = Flow Network
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Inverse Transportation Problem, Flow Network Stabilizes Noise



Flux Capacitor: Algorithm Outline
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edge »——t1 poses the constraint:
flux, + flux. +/- error,,, = coverage
respectively

flow, + flow, +/- error = readcount

reads

— set of constraints across network

— solve as a linear program, OF: minimize error
— output the predicted expressions fluxy resp. flowy
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fluxy:= coverage [reads/nt]
across whole transcript X

flowy:= expected number of reads
sampled from X

between ané ]
O
= [px(x) dx



Normalization: Straightforward

The RPKM value [Ali & Co 2008]

raw
expression
/ value
Reads
. Fragmentation-
Per Kilo-Base Normalization

per Million mapped Reads

lexperiment
size

Experiment 2

Variations: RPK, FPKM, ...




Normalization of the Distribution: e.g., Quantile Normalization, etc.
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(this is NO Geuvadis Data)




Normalization to compare Distribution

1000 1500 2000

500

[ - Gene expression data has outliers
(Zipf's Law)
- Outliers bias statistical indicators based on
e .« data point values (e.g., Pearson’s product-
5 '::;:.): . e moment coefficient, LSLR, dispersion, etc.)
-7 o | - Some indicators are robust (e.g., Spearman’s
-7 rank corr.)
-7 BUT do not assess gene expression similarity
0?° _ -7 R =0.86
o o Slope = 0.43 - Alternative: Normalization before stat.
“,; -6 ° rho =0.83 | assessment
| 1 1 | 1
0 500 1000 1500 2000

Number of removed outliers
0 1 2 3 4 H 6 7 8 9

R 0.86 0.72 0.76 0.76 0.75 0.75 0.75 0.76 0.77 0.77
Slope || 0.43 0.47 054 0.59 0.62 0.65 068 072 0.75 0.67

(this is also NO Geuvadis Data)



Normalization to compare Distribution
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- Gene expression data has outliers
(Zipf's Law)

- Outliers bias statistical indicators based on
data point values (e.g., Pearson’s product-
moment coefficient, LSLR, dispersion, etc.)

- Some indicators are robust (e.g., Spearman’s
rank corr.)
BUT do not assess gene expression similarity

- Alternative: Normalization before stat.
assessment

Number of removed outliers

2 3

5! 6 7 8 9

0.89 0.89

0.8 084 084 084 084 083 083 083 083 0.83
0.88 0.88

0.90 090 091 091 0.90

(this is also NO Geuvadis Data)



Quantification of other Elements

Extrapolation of Transcript RPKM alternatively to
Re-quantification by complementary methods

(A) Exons (B) Genes (C) AS Events
AStalavista
. . . [Sylvain & Micha,
unique boundaries protein-coding units 2007-2009]
Vs. vs-
genomic overlap genomic IOC.' Svlvai
(hybrid transcripts, ylvain

nc transcripts) Foissac




Comparison of Expression Values
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-Different approaches depending on question / element that is compared

- Some Statistics do not require (much) a priori normalization (e.g., comparison of

same element in different states)
- Here, comparison of Gene Expression Landscape by Pearson coefficients

(again, this is NO Geuvadis Data)
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