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Abstract

Transcriptomes are defined by the interplay between gene expression and RNA
processing—most importantly by splicing—and constitute the atomary cellular
phenotype at the molecular level. We employed the Geuvadis RNA-Seq
experiments in Lymphoblastoid Cell Lines of known genotypes to rigorously
identify subtle, but systematic, population variations in expression levels and
exon-intron structures—especially between individuals of European and of
African origin. Our results show that, mechanistically, many of these differences
are caused by effects of genetic variants on the functionality of splice site motifs;
beyond the paradigm of trans-acting splicing regulators established by
multitudinous reports, we thus provide the first comprehensive collection of
alternative exons and splice sites controlled by DNA variants rather than by
factors that enact on the RNA level. Furthermore, we rigorously investigate novel
transcriptional elements discovered by RNA-Seq—i.e., splice sites, introns, and
cleavage sites—which we include in our investigation of population-genetic

transcriptome adaptations.

Introduction

The Geuvadis project 1 provides high resolution RNA-Seq data from
lymphoblastoid cell lines (LCLs) obtained from individuals whose genomes have
been sequenced by the 1000 Genomes Project 2, comprising five distinct
populations—namely, the African Yoruba in Ibadan/Nigeria (YRI) and the
European Finns (FIN), British (GBR), Toscani (TSI) and Utah residents with

Northern and Western European ancestry (CEU). These data are particularly



well suited to study individual differences in the regulation of transcription and
RNA processing in human cells.

The RNA composition of a cell line defining its phenotype at the molecular
level is primarily the result from thermodynamics of gene abundance, a steady-
state balance between specific transcription and degradation rates, as well as
from processes determining the composition of the transcripts: transcription
initiation, splicing and 3’-end formation, among others.

Previous studies of transcriptome variation in human populations
focused on fewer populations of smaller sample size 3-5, and/or interrogated
gene expression by micro-arrays 3. The Geuvadis dataset provides expression

estimates in 289 individuals from each of the aforementioned populations by

RNA-Seq, which provide more accurate quantifications of genes and even of
single transcripts 578, thus allowing to monitor not only quantitative variations
in gene expression, but also qualitative variations in the usage of alternatively
spliced transcripts allowing to determine the predominantly expressed
transcript from each gene (i.e., “major transcript” 8).

Moreover, the availability of personal genomes for all Geuvadis
individuals allows us to investigate the impact of genetic variants (SNPs and
indels) on molecular mechanisms of RNA processing, and especially on the
substrates of splicing processes. (Alternative) splicing has been identified as the
key mechanism to generate the complexity observed in mammalian
transcriptomes °, and malfunctioning can lead to severe illnesses 1011, but little is
known about the mechanisms and extent to which genetic factors shape the

transcriptome landscape.



It is known that as a prerequisite for the splicing of an intron, specific
factors recognize the intronic sequence adjacent to the upstream exon, the splice
donor, by proper RNA-RNA pairing, whereas sequence attributes of the splice
acceptor intron end at the downstream exon are recognized by less specific
protein-RNA interactions 12. Traditional research on in silico gene finding
elaborated computational models for the thermodynamic affinity of these RNA
motifs recognized by corresponding factors of the splicing machinery 13. Such
models can be employed to predict immediate effects of variants within the
splice donor/acceptor sequences on the splicing process. Furthermore “exon
definition”, the concerted binding of splicing factors at both sides of especially
short mammalian exons, could in theory play a role in propagating the effect of
genetic polymorphisms from one intron to the neighboring one 14.

RNA-Seq also has demonstrated to improve our understanding of the
transcriptome compared to annotations based on traditional EST data 1516 by
allowing de novo detection of upstream transcription initiation, unannotated
splicing structures and alternative cleavage sites 81718, The combined
sequencing depth of the Geuvadis project with >1 billion paired-ends reads, each
of 2*75nt in length, provides an excellent resource to characterize individual
transcript expression variation throughout human populations, and thus to

complete our picture of LCL transcriptomes.

Results
Variability in Gene Expression
We first investigated gene expression patterns in lymphoblastoid cell

lines (LCL) derived from different individuals and populations. Based on the



Geuvadis RNA-Seq dataset of 462 individuals that passed the carefully chosen
quality control criteria 1%, we identify population marker genes, i.e., those that are
shared by >90% of the individuals of the population they are marking, which
then are distinguished qualitatively whether they are population-specific genes,
or genes shared by a certain subset of populations, respectively ubiquitous genes
that are shared across all five studied populations. As a reference annotation, we
used Gencode 29,

The number of expressed genes 2 1 RPKM varies from 18,145 to 19,378

per population and does not scale with the number of samples sequenced, nor

the total/average sequencing depth, but with the estimated, but with the

estimated age of the cell lines in each of the populations ((Tab.S1)) : i.e.,, >20 years

for CEU, ~7 years for YRI, ~5 years for TSI and ~3 years for FIN and GBR
samples (Coriell Cell Repositories, pers. communication). Our observations agree
well with earlier reports about increasing levels of mRNA expression with

progressing cell culture “age” and passaging 21-23. Overall, the rate of gene

detection declines but does not saturate ([Fig.1al). Also, the number of genes

cumulatively observed in a comparable number of replica samples is much lower,
which underlines the information gained by sequencing an additional sample.
Furthermore, the number of detected genes increases by leaps and bounds

across technical replicates from individuals of different populations, suggesting

population-specific expression patterns (|Fig.1a)).

Although the number of genes cumulatively detected above 1 RPKM in the

five investigated populations altogether corresponds about to the highest

number of genes found in a single population (Tab.S1|{ and |Fig.1aj), the



proportion of ubiquitous genes is highly dependent on the expression cut-off: at
the levels of 1, 5, and 10 FPKM, we observe a steadily decreasing rate of

ubiquitous genes, respectively from 92%, 84% and 77% of ubiquitous genes,

respectively (|Fig.1b{). Although the majority of marker genes are shared by

multiple populations—as can be seen from the steadily increasing number of

markers observed from 2 to 5 populations (|Fig. 1b/)—the number of population-

specific genes cannot be explained by statistical dilution as there are less genes
shared between 2 populations than between 3 or only 1 population(s). When
increasing the expression threshold from 1 to 10 FPKM, the number of
ubiquitous genes is decreasing rapidly whereas the number of non-ubiquitous
genes (i.e., genes shared between 1—4 populations) stays rather constant.
Altogether, these findings suggest that population specificity is a true biological
feature of transcriptomes.

To further dissect population-specific transcription rates of ubiquitous
genes, we next focused on genes that are predicted to be differentially expressed
(DE) between population pairs. The number of DE genes varies more than 5-fold

for two-fold log expression level differences (and 10-fold for three-fold

differences), between 273 (65) and 1,456 (723) observed DE genes ([Tab.S2)). As

expected, population-specific gene expression accumulates in lowly abundant

genes, with marginal differences in the median abundance of DE genes predicted

for each population ([Fig.1c).

In order to address the biological relevance, we performed a PCA analysis

on the DE genes identified by such all-against-all pairwise comparisons ({Fig.1d}).



As expected by our observations on the number of expressed genes, CEU samples
exhibit the largest differences (i.e., the highest number of DE predictions) to the

other populations, and also the number of DE genes found for the other

populations correlates with the cell line age (|Tab.S2|); therefore, clustering

approaches at first identify CEU rather than YRI as outgroup of the dataset

(lFig.S1a and by).

In order to deconvolute the underlying biology of populations from cell-

culture driven biases, we compared each population against the other ones

combined (|Fig.S1c). Although the number of thus predicted DE genes still varies

amongst populations, with a persistent trend of genes more frequently observed
to be up-regulated in older cell lines, we now observe <2-fold differences in the
number of predictions across all populations without any obvious correlation

between cell line age and number of predicted DE genes, and less polarity

between up- and down-regulated genes [Tab.S3|. A distance measure based on

pairwise intersections of DE gene sets separates YRI from the European

populations, thus better reflecting population history ({Tab.S4] and |Fig.1e|) 224

Variability in Splicing

We then assessed population-specific transcript usage. Under the
assumption that genes usually express one main transcript 8 we first
investigated how often this major transcript is different within and between
populations. Similar to our previous analysis we first focused at an expression

threshold of 1 FPKM on ubiquitously expressed genes that preserve the major



transcript consistently within one of the populations (i.e., in 290% of the

individuals). The majority of those genes (70%) also exhibit an ubiquitous usage
of the major transcript throughout all populations, which constitutes a lower
fraction than we recorded for ubiquitously expressed genes. However,
observations of ubiquitous major transcripts are more consistent for lowly and

highly expressed genes (68% and 64% ubiquitous at 5 and 10 FPKM,

respectively, |Fig.2a). Interestingly, we observe at all tested expression

thresholds a relatively higher number of genes that show YRI-specific major

transcripts ((Tab.S5)).

To estimate variations of the transcript usage in a more continuous

manner, we considered the dispersion of relative transcript ratios within each
gene: |Fig.2b| shows that most of the expressed genes—i.e., together 61,600
pairwise gene comparisons—agree very well in their population-specific
transcript dispersion with the median variability observed across all populations
(R= 0.99). At a dispersion threshold of 0.1, merely a minority of <1% of the

expressed genes exhibit a comparatively high or low variability. Reassuringly,

these outliers in splicing variability are not accompanied by predictions of
comparatively more/less expressed transcripts |Fig.S2|. As a proxy for transcript
variability, the distribution of Bhattacharyya distances is comparatively lower in
Nothern European and African (GBR, FIN and YRI) individuals than in the

Central- and South-European populations (CEU and TSI, [Fig.S3a/). Consequently,

we also observe relatively higher support levels for Gencode introns in Northern

European populations and in YRI (|Fig.S3b}), which could be linked to earlier



observations on differences in the degree of alleles sharing of the corresponding
populations 2.

We next studied genes with significantly different splicing patterns and, in
agreement with our previous analysis regarding the usage of the major
transcript, we find at a false discovery rate (FDR) of 1% most genes with
population-specific transcript patterns in YRI individuals: 193 genes in YRI vs. 13
genes in CEU, and none in the other populations. As splicing patterns have
demonstrated to be determinant of the corresponding cell type 925, large
differences in the qualitative transcript usage would have been surprising given
that our study contains exclusively LCL samples. In contrast to previously

identified splicing dispersion outliers, these genes with bona fide population-
specific splicing exhibit usual dispersion coefficients (colored dots in |Fig.2b}).

In spite of the time of LCL cultivation, an analysis by multidimensional
scaling of the pairwise differences in splicing ratios identifies YRI to be less

similar to the other investigated populations (|Fig.S3c| vs. |Fig.1c and d|). Putting

our former observations about population-specific variation of gene expression

(ITab.S2|) on a common scale with these latter results about population-specific

transcript usage, we find that differential transcript usage has a relatively higher

contribution exclusively to the delineation of the YRI population (|Fig.S3d| and

Fig.2c|) 1.

Finally we assessed whether genes that we classified to have a
particularly high or low variability in their expression and/or splicing exhibit

specific functions. Genes that we identified to have extreme splicing dispersion



coefficients are enriched for proteins at the outer cell membrane ({Tab.S6a and

Fig.2d). Interestingly, we observe very similar patterns of functional enrichment

in DE genes ([Tab.S6b| and |Fig.2d), although there is little overlap between these

two sets of genes (93 out of 1030 respectively 595 genes). Given that a cell is to
preserve the attributes and functionality of its respective cell type, our findings
agree well with observations that individual adaptations are mainly effected
through modifications at the surface 21-23. As a complementary confirmation, we
observe a core of expression-invariant genes with functions in inner

compartments of the cell, i.e. in vesicles, in organelles and in the nucleus

(ITab.S6c| and |Fig.2d)). Strikingly, functional terms annotated for the products of

genes with population-specific splicing patterns coincide well with those

observed in genes that vary little in their expression ([Tab.S6d and |Fig.2d|),

reconfirming that our observations of population-specific splicing are not related
to differences in transcription rates.

Summarizing all, our results imply that population-specific transcript use
is a different indicator than population-genetic gene expression, and,
importantly, in contrast to our previous studies of DE genes, our results obtained
from transcript usage phenotypes exhibit less evident cell line biases, suggesting
that RNA processing—predominantly splicing—reflects biological patterns of

population differences better than gene expression.

Splicing in Personal Transcriptomes

10



In order to investigate the molecular mechanisms that cause
transcriptome variations between populations and especially between
continents, we employed genotype data from the 1000 Genomes Project 26. We
focused on variants that directly impact on the affinity of annotated splice sites
and, following traditional approaches in gene finding 27, we employ
computational splice site models that consider an informative sequence of 9nt
for splice donors, including the GT dinucleotide, and 27nt for splice acceptors—
including the AG dinucleotide and additionally the typical area of the preceding
poly-pyrimidine tract 28. To estimate the splicing efficiency of different variants,
the thermodynamics of splicing is modeled as log-odds scores based on the
frequency of observed donor and acceptor sequence motifs 13. Under this model,
sequences with a higher degree of similarity to the consensus bind more tightly
to the corresponding splicing factors 2239, and therefore are more frequently
observed as authentic splice sites 31.32,

Confirming earlier reports that modification of splicing can be driven by
less efficient thermodynamic binding of splicing factors to the sequence 33, our

thermodynamic model predicts lower scores for alternative splice sites in

Gencode as compared to the scores of sites annotated as constitutive ((Fig.S4a/) 33.

Complementarily, when testing our bioinformatics models empirically by
calculating from the Geuvadis RNA-Seq data so-called PSI-scores (“percent
spliced in”) that reflect the degree of inclusion of an exon in mature transcripts
1834 we also observe that the distribution of splicing scores at the flanks of

skipped exons (PSI score <0.9 in >90% of the individuals) is significantly lower

11



than bona fide constitutive exons (PSI score >=0.9 in >90% of the individuals,

Fig.S4a)).

We found >10% (51,342 out of 477,880) of annotated splice sites are
affected by at least one variant in the splicing motif, equally in constitutive and
alternative splice sites. The majority (i.e., 47,453) of these sites are affected by

exclusively one variant, but we found that splice sites can comprise up to 7

known polymorphisms ([Fig.3al). Interestingly, the splice site with the highest

degree of genetic variation falls close to U2-2, the RNA part of the central splicing
factor U2, 14nt downstream of a characteristic sequence at +23nt that has been
reported to be required for 3’-end formation of human snRNA genes transcribed
by RNA polymerase II 35 However, although variants seem to influence the

predicted U2-2 expression significantly, we did not observe a direct correlation

with the computed splicing scores |Fig.S5|.

Most variants in splice site regions are single nucleotide polymorphisms
(SNPs), with a repression of indels (2% vs. 3.6% annotated indels in general)
likely due to purifying selection against large genomic perturbations in
functional elements, although coding sequences exhibit an even higher depletion
(<0.5% indels) 2. The distribution of variant frequencies in splice site sequences
is negatively correlated to the information content in the corresponding splice

site consensus motif, and the dinucleotides involved in the splicing reaction are

mostly depleted of sequence variants (|Fig.3b/). However, we also observe few

examples with RNA-Seq evidence for alternative splice site usage triggered by
SNPs that impact the functionality of splice site dinucleotides: in these cases

homozygote individuals exhibit exclusively the use of the one or the other exon

12



boundary whereas heterozygote individuals provide evidence of both splice sites

being used (Fig.S4b-dj).

Considering the differences in our splice site score predictions between
the sequence of the reference and the alternative allele, we classify the variants
in five classes: most alternative alleles (~52%) decrease the predicted score and
correspondingly are classified as deteriorating variants, however, ~32%
enhancing variants are observed to increase the score; less frequently, genetic
variants lead to destruction (~10% "inhibiting variants”) or activation (<
0.5% "activating variants") of splice site functionality. In the remaining ~5% of
the alternated splice site motifs, our computational models do not predict any
thermodynamic effect by the computed score ("neutral variants").

This classification is based on the effect of the nonreference allele, which is
usually the novel derived allele, with the reference genome corresponding to the
ancestral state. However, this is not always the case. For variants in each of these

classes, we measured the global derived allele frequency (DAF, i.e., the frequency

of the non-ancestral allele, |[Fig.3c)) 2. The distribution of activating variants

differs substantially from all the other classes, with 72% of DAFs >0.1 in contrast
to less than 13% DAFs >0.1 in other variant classes. This implies that sites in the
activating nonreference class mostly are rare cases where the reference genome
contains a low-frequency derived allele that disrupts the splice site and where
the nonreference allele represents “normal” active state of the corresponding

site. As expected, the deteriorating/inhibiting variants are enriched in very low

allele frequencies likely due to purifying selection (|Fig.3c)).

13



In order to analyze how the predicted splice score of variants correlates
with our RNA-seq data, we studied the PSI scores of alternatively included exons
(0.2< PSI< 0.8 in >80% of the individuals). We found that exons with potentially
splicing-deteriorating/inhibiting variants at their flanks exhibit already low
inclusion levels even in individuals carrying the reference allele (median PSI
score 0.37), whereas splicing-enhancing/activating variants target preferentially
the flanks of exons that are already relatively highly included when employing
the reference allele (median PSI score 0.76). As expected, exon inclusion

gradually decreases/increases when including more alleles with a predicted

negative/positive effect on splicing (|Fig3dj) 1.

Discovery of Novel Transcript Elements

To estimate up to which degree the Geuvadis experiment can complement
current knowledge about transcript annotation in LCL, we superimpose split-
mappings to Gencode exon-intron structures. We found >64 million reads
supporting ~2/3 of the annotated introns (222,862 out of 337,247 introns) and
additionally ~14.7 million split-mappings that provide evidence for >1 million
intron variations within the proximity (30nt) of annotated exon boundaries.
Although the overall distribution of predicted introns follows largely the one of
introns annotated in the reference, a mixture of two log-normal distributions

caused by distinct groups of short (~100nt) and long (~1,600nt) introns 36, there

are outliers of extremely short and long split-mappings |Fig.4a. Furthermore, the

unannotated splice sites inferred by split-mappings exhibit realistic, but

significantly weaker, splice site scores ([Fig.S6a)). Obviously, novel elements are

14



of rather etiolated character because they mostly constitute minority events of

the population ([Fig.S6b|), observed at comparatively low expression levels

([Fig.S6c). However, a conservative set of 3,545 novel introns is found in each

population and exhibits a read coverage distribution comparable to annotated

introns (|Fig.S6d)); also their median lengths are comparatively close to the one

of annotated introns (2,217nt vs. 1,589nt, |Fig.S6e|).

In spite of the generally low abundance and coverage, we find biological
phenomena of annotated introns also reflected by the attributes of novel introns:

at the boundary of exon extensions created by novel sites we observe a shift in

the amount of nucleotide diversity ([Fig.4b/)—similar to the ones of annotated

counterparts (|Fig.3b|), albeit more diluted. As for annotated exon-intron

structures (|Fig.S4b-d), we find evidence for genetic control of splice site

functionality at novel exon boundaries, albeit with lower read support (|Fig.S6f}).

Fig.S7a and b| show positive biases in the location of novel exon boundaries as

expected by characteristics of the splice site motifs, at +4 for donor 37 and at -3
at acceptor sites 38. Additionally, we observe alternative splice site creation
repressed in a region of about -10nt before the acceptor dinucleotide, which
corresponds to the distance of a typical branch point and is expected to be
depleted of adenine bases as they could be confounded with the true branch site
and change the splicing mechanism 39. Nevertheless, we observe alternative

acceptor sites at larger distances to the annotated exon boundary than

alternative donor sites ([Fig.S7c), probably due to higher chances of in-frame

15



stop codons created by splice donor sequences 49. Novel introns mostly modify
only one end of annotated exons, but we identify 36,426 exons that exhibit
bilateral splice site variation. These exons are significantly shorter (p-value <e-

16 Wilcoxon) than exons with exclusively one variable flank, in agreement with
exon definition mechanisms along short exons ([Fig.S7d|) 1.
Novel introns found by split-mappings also exhibit selective constraints

with respect to protein-coding functionality of RNA: introns confirmed by at

least half of the individuals exhibit to change the length of the sequence included

in a transcript by a multiple of 3 more frequently than expected (|Fig.S8al).

Consistently, we also find relatively more transcripts with an annotated CDS to

be affected by frame-preserving exon boundary changes ([Fig.S9a). This could be

either due to the generally higher expression level of protein-coding genes

(IFig.S9b}), or due to nonsense-mediated decay, and/or by alternative splice sites

in the genome being shaped to preferentially produce alternative transcripts that
preserve the frame. Our data ([Fig.S7]) supports the latter hypothesis, suggesting
that genomic rather than cellular control causes the phenomenon: possibly
caused by high levels of nuclear RNA in the whole cell RNA extractions*?, the

exon coverage of non-3 shifts is not decreased (|Fig.S8b and c}), and, in fact,

persistent novel alternatives exhibit often a periodicity of 6 (|Fig.S8d and e}),

highlighting the mutual importance of neighboring codons as reported by
dicodon frequency biases 43.
Next we analyzed the overall landscape of alternative splicing events

depicted by the set of 3,545 novel introns that are supported by at least one

16



individual from each population. [Tab.S7| shows the exhaustive classification of

all AS patterns inferred by these novel introns in the context of Gencode exon-
intron structures 49, with most introns (69%) linking novel splice sites to an
existing one, less frequently introns employ 2 novel sites (25%), and novel
combinations of exclusively 2 existing sites are rather exceptional (5%). In spite
of substantial differences in motif complexity, split-mappings predict about
equally many novel donor and acceptor sites (4,662 vs 4,926). We find

comparatively many events that indicate alternative exons beyond the transcript

extremities, especially at the 3’-end (1,616 5’- vs 3,210 3’-events, |Tab.S7)).

To further investigate 3’-end modifications, we extracted read mappings
that align partly with the genomic sequence and partly with poly-A tail retrieving

in total 52,436 putative cleavage sites (PCSs). The number of PCSs found with

higher read support is decreasing rapidly ([Fig.4c|), but independent of the

expression rate from the underlying transcript ([Fig.S10a). Focusing on a

conservative subset of 21,102 PCSs supported by =2 reads, which are still more
than twice as many cleavage sites as identified in a complementary study 4, we

observe that 71.4% of them fall within annotated 3'UTRs, and 66% even within
50nt of the 41,542 3’-transcript ends annotated in Gencode reference (|Fig.4d)).
Reassuringly, for 96.3% of PCS predictions we find within 50nt a hexamer
sequence that agrees with one of the 13 known consensus motifs of the CPSF
(cleavage / poly-adenylation specificity factor) binding site, the so-called poly-A
signal. Motif frequencies of known poly-A signals found at PCSs are very similar

to those previously reported (upper left panel in |[Fig.S10b/) 44, but information

17



content is reduced when considering genetic variants, even if they produce one

of known poly-A signals ([Fig.S10bj, upper right panel). Also unknown poly-A

motifs in the reference sequence exhibit relatively lower information content

([Fig.S10bj, lower left panel), consequently, variants that create unknown poly-A

signal motifs are rather degraded and unlikely to serve as substrate for CPSF

([Fig.S10bj, lower right panel). Such deteriorating variant effects are recorded

more frequently in poly-A signals immediately downstream of a PCS (|Fig.S10c

and |Fig.4d), supporting an hypothesis that suboptimal CPSF binding is possible

in cases where upstream alternatives for 3’-end termination are available.

Discussion

Our comprehensive study demonstrates that, overall, the cellular
phenotype of lymphoblastoids is well conserved across the investigated 462
individuals from five populations, both in terms of quantitative levels of

transcription rates as well as by the qualitative patterns of transcript usage

([Fig.2a,b]). However, we identified hundreds of genes that show population-

specific deviations in their expression levels ([Fig.1bl) or transcript variability

([Fig.2bj). Functionally, genes with population-specific transcription rates are

enriched for proteins impacting the cell surface, whereas patterns of distinct

transcript usage are controlling many proteins inside the nucleus, organelles and

other inner compartments (|Fig.2c|)*>.

18



From a technical point of view, we describe methods to avoid biases of
gene expression known to be caused by the age of the cell lines, i.e. by
normalization of DE analyzes. Whereas, our results demonstrate a general
robustness of transcript comparisons to cell line age. This enhances our
understanding of changes that happen during LCL cultures: despite
modifications of transcription rates, the established splicing program that mainly
defines the cell type 18 does not appear to be altered during cell line aging.

The comparison of the relative contribution of expression levels and
splicing on population differences showed an interesting pattern: although
relatively few genes show significant changes in their splicing patterns between

populations, the contribution of transcript usage to inter-continental differences

is significantly increased ([Fig.2c)). Our observations shed new light on recent

findings about the role of (alternative) splicing in evolutionary adaptation of
mammalian species 2°, suggesting that adaptations in human populations can
trigger modifications in the splicing patterns as well. However, in our study such
differences are limited to populations from different continents (i.e., Europeans

as compared to Africans), whereas intron-exon structures within European sub-

populations do not differ significantly from each other (|Fig.S3d)).

For the splicing variation in human populations that is driven by genetic
variants in splice sites (|Fig.S4b-d), we demonstrate that our computational
models can predict changes in the thermodynamics splicing potential due to
these variants. Most of the variants segregating in the population appear to have

relatively modest effects on splicing, but we pinpoint a set of propagating

variants that actually describe a functional splice site in contrast to the splicing

19



defective reference (|Fig.3c)). Importantly, we are able to show an enrichment of

variants with negative effects on splice sites where already individuals with the
reference allele show low inclusion levels of the corresponding exons, and

similarly we demonstrate that splicing enhancing variants are mostly targeting

exons that are already predominantly included in reference alleles ([Fig.3d)). In

analogy to the exon-gain and exon-loss mechanisms described for species
evolution 46, this suggests gradual effects of variants fine-tuning the inclusion
level of alternative exons.

Furthermore, we demonstrate that de novo split-mappings—when
reproduced by sufficient individuals/populations—exhibit insert size

distributions, sequencing coverage and population support similar to their

annotated counterparts (|Fig.S6d,e] and |Fig.4a)). In contrast to expression

thresholds, employing reproducibility across samples as a fidelity criterion still
allows for assessing novel splicing events also in rather lowly expressed genes,
highlighting the unprecedented possibilities provided by the plentitude of
individuals in the Geuvadis dataset.

Based on those bona fide introns, we report the compendium of
alternative exon-intron structures not described in the Gencode v12 reference,

which exhibits mainly patterns of modifications at existing exon boundaries and

alternative 5’-/3’-exons ([Tab.S7]). The extensions/truncations of known exons

show an enrichment of changes by a multiple of 3nt, and our results suggest that

this is not exclusively caused by degrading mechanisms—NMD—of frame-

20



shifting transcripts, but by the splicing motifs in the genome being biased to

prefer shifts that preserve the reading frame (|Fig.S8)).

Moreover, our analysis reveals that also our current picture of cleavage
sites is rather incomplete and we describe the to our knowledge currently most
complete atlas of putative cleavage sites in human cell lines, derived from RNA-
Seq evidence from hundreds of heterogeneous individuals. Most of these

empirically found cleavage sites fall close to annotated cleavage sites and exhibit

an upstream poly-A motif ([Fig.4c). Genetic variants also impact poly-A motifs,

and we observe loss of function especially in poly-A signals that are downstream

of predicted cleavage sites, i.e., where alternative mechanisms of 3’-end

formation exist ((Fig.4d)).

Altogether, this study demonstrates the power of large-scale RNA-
sequencing analysis to understand population variation in the transcriptome,
shaped by genomic motifs for RNA processing and fine-tuned by genetic variants
in them. Our results demonstrate already a vast diversity of annotated and
unannotated transcript features, and it is likely that in the future application of
our approaches to different cell types and tissues will add another important
dimension to transcriptome complexity. Our improved understanding of this key
cellular phenotype opens doors for better characterization of cellular function

and its role in human variation.

Online Methods

Gene Expression

21



Ubiquitous Genes: Our study is based on the read mappings and
transcript quantifications available from the Geuvadis project ! for all 462
samples that passed QC 1°. Gene expression is estimated by the sum of length-
and volume-normalized quantifications of its annotated transcripts (RPKM
values based on paired-end reads, i.e. FPKM values). Genes are classified
according to their expression behavior within a population; all genes that are
shared by >90% of the individuals in a population are considered representative
marker genes. We further distinguish markers that are observed exclusively in
one population (“population-specific’ genes), from those that are shared
between 2, 3, 4, or 5 populations (“ubiquitous genes”).

Differentially Expressed Genes: Due to variations in the number of genes

detected in each population pool [Tab.S1), we limited our DE analysis to 16,568

(~73% of all detected genes) autosomal genes that are ubiquitously expressed
and show 25 counts per million mapped reads in =1 sample. For predicting
differentially expressed (DE) genes, we employ a Bioconductor package based on
the Poisson-Tweedie family of distributions, which has been demonstrated to be
suited for datasets with >15 samples 47. This software normalizes read counts
according to the Trimmed Mean of M-values (TMM) method 8. Genes were
deemed significantly differentially expressed between populations at an FDR <

0.05 and a log-2fold respectively log-3fold change.

Transcript Expression

Major Transcripts: To identify preferentially expressed forms of a gene,

we ranked the transcripts annotated for each gene according to their expression
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level, and identified the highest expressed one. Subsequently, in analogy to our
previous study on population-specific genes, all major transcripts expressed
above a certain threshold (i.e, 1, 5, or 10 FPKM) were assessed whether they are
expressed in 290% of the individuals of a population (i.e., “major transcripts”) 8.
We estimated the degree up to which such major transcripts are shared between
populations and labeled transcripts that are identified as the major form of their
respective gene in all 5 populations as “ubiquitous”.

Splicing Dispersion: To assess alternative splicing variability between
populations by splicing dispersion, the expression levels of transcripts are
represented using their relative abundance, i.e. splicing ratio in the space [0,1]T
(RT space) with T being the number of transcripts expressed from a gene. The
centroid of the samples can then be used to test for the homogeneity of the
different population variability using an analysis of the variance-like framework
49, As an estimation of the splicing variability, we computed the dispersion as the
average Hellinger distance of the samples from the centroid. After correction for
multiple testing employing the Benjamini-Hochberg algorithm, the dispersion of
a gene is considered to be different between two populations if the computed p-
value is <0.01 (FDR of 1%) and the change in dispersion is >0.1 7.

Components of the Population Classificator: By ANOVA decomposition,
the total inter-individual variability of transcript expression levels (Vt) is
separated into within-population variability and between-population variability.
Computing the coefficient of determination based on these two variability
measures provides an estimation of the population classificator effects. On
average, the between-population variability of a gene represents 3% of the

transcript expression variability, from which changes originating from
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fluctuations in gene expression and splicing are estimated by the population
classificator. Samples are projected to a model of constant splicing 7 (straight line
in RT) which allows to re-compute the between-population variability
considering gene expression effects exclusively: lower values than the former
between-population variability indicate the degree of contribution of alternative
splicing to the delineation of populations.

Functional Analysis: Computation of overrepresented GO terms in the
set of DE genes respectively genes with differential transcript dispersion has
been computed by the David functional classification program 3°. Terms that are
significantly overrepresented compared to background gene data have been
classified according to their cellular location in one of the following classes:
surface, organelle/vesicle, nucleus, plasm, ubiquitous (i.e., present in multiple of

the other categories).

Population Genetics of (Alternative) Splicing

Splice Site Scores: We computed scores for donor and acceptor sites by
employing a first order Markov Model to score dinucleotide transitions, as
implemented in the gene predictor genelD 13. In brief, transition probabilities are
estimated by known human splice site sequences, and motivated by traditions of
scoring metrics based on probabilities, a score is assigned to each splice site by
the sum of log-likelihoods from all transitions in a splice site sequence: at the 5'-
end of introns a region [-2;7] around the exon boundary is considered to score
the donor potential, whereas at the 3’-end of introns a corresponding sequence
stretch of [-24;3] is analyzed to score the splice acceptor dinucleotide with

preceding poly-pyrimidine tract. Naturally, by the differences in the number of
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considered positions and also in their respective information content, scores
derived for donors and acceptors differ from each other. Annotated splice sites
usually obtain scores in the range [-10;10], a score of <-103 indicates that there
currently exists no known functional site with the corresponding sequence.

PSI Scores: To estimate the exon inclusion level from RNA-Seq reads, we
computed the so-called Percentage Splice Index (PSI) similar to an earlier
proposed approach 1834 where 3 types of quantifications are used per exon: (A)
the number of reads that map within a certain exon, (B) the number of split-
mappings to exon-exon junctions between the considered exon and both
adjacent exons, and (C) the number of split-mappings to the exon-exon junction
from the adjacent exon upstream to the adjacent exon downstream. Then,

PSI=A+B/(A+B+()
is computed, where a value of 0 means that the tested exon is not included,
whereas a value of 1 indicates that the exon is constitutively spliced in. In our
study, we focused on 64,120 exons that are alternatively spliced in all 462
samples, i.e., with observations for A, B, and C > 0 as a precondition to compute

the PSI score.

Discovery of Novel Transcript Elements

Novel Intron Forms: We rescued bona fide introns and splice sites that
are not annotated in the Gencode v12 reference transcriptome by analyzing
split-mapped RNA-Seq reads. Novel introns are identified by split-mappings with
one end in 30nt proximity of an annotated exon boundary, considering only
properly paired mappings with a mapping quality of at least 150, an edit distance

<6, and an insert-size of <1,000,000nt.
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Prediction of Putative Cleavage Sites: To identify putative cleavage sites
(PCSs), we employed reads containing a poly-A tail or a poly-T head that are
indicative of the cleavage site in poly-adenylated mRNAs. After trimming the
reads for these subsequences, filtering by a minimum informative length (i.e.,
>25nt after trimming) and removing low complexity reads (i.e., read sequences
with an [A] and [T] content 280%), we obtained ~24M reads of which 685,351
map uniquely to the genome and indicate a PCS.

Poly-A Signals: In order to investigate which motifs are enriched in the
sequences around these PCS, we used a recursive approach similar to an earlier
proposed method 51, where we scanned the sequences for the 13 motifs
previously identified as the binding site for the CPSF poly-adenylation factor by

the order of their know frequency.
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Figure Legends

Figure 1: Gene expression in LCL from 5 different populations. (a) Gene
discovery observed by the cumulatively discovered number of quantified genes
(>1 RPKM) as a function of the number of sequenced samples, for 462 non-
redundant individuals (green) and for 5 replicated samples—one per
population—sequenced 8 times each (blue; roman numbers). The lower panel
shows a zoomed area of the larger panel with all individuals. The order of the
samples has been permuted 30 times and thick bars represent the median,
whereas the colored areas are the 25t and 75t percentiles of the corresponding
distribution. The increasing curve demonstrates how almost every sample
expresses some genes not observed in others, and the green curve of different
samples being above the replicate samples shows that part of this increase is due
to population diversity rather than increased total sequencing depth.
Furthermore, gene discovery exhibits volatile increases when crossing
population boundaries, indicating population-specific genes. (b) Ubiquitous
genes (i.e., expressed above a certain threshold in >90% of the individuals of all 5
populations; white bars) constitute the largest fraction across all the investigated
expression thresholds (1, 5, and 10 FPKM). There is a comparatively small
accumulation of population-specific genes (dark green bars), however, their
relative fraction is substantially higher than expected considering the decreasing
trend in the number of genes that are shared between less populations, and
importantly these fractions remain about the same also at higher expression
thresholds. (c) The curves show the log-log expression profiles of transcript
expression levels recorded in each population. Differentially expressed (DE)
genes accumulate in the lower abundant expression ranks. There are minor, but
significant, differences in the distributions of DE expression levels in between
the populations. (d) Multivariate analysis of comparisons based on pairwise
comparisons of populations by their gene expression levels indicates CEU to be
an outlier of the dataset, most likely due to the unequally older cell lines of CEU

samples. (e) When considering all 5 populations together for the prediction of
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DE genes, population-specific signals that are less biased by cell line age and
more information from the biology of the underlying populations can be

recovered.

Figure 2: Population-specific splicing. (a) Although we observe relatively less
ubiquitous major transcripts (grey bars) than there are ubiquitously expressed
genes (white bars), the proportion of former is more similar in lowly and highly
expressed genes (with thresholds at 1, 5, respectively 10 FPKM) when compared
to the latter. (b) The scatter plot summarizes the splicing dispersion coefficients
of all genes, i.e., the variability amongst the relative transcript expression levels
of each gene. Comparing the splicing dispersion observed in a specific population
(v-axis) with the median dispersion of the corresponding gene in all 5
populations (x-axis), it can be seen that for most genes the transcript variability
observed in a particular population correlates well with the overall variability
(black dots). Colored dots highlight genes with significant differences in their
population-specific splicing patterns, which obviously do mostly not coincide
with dispersion outliers (i.e.,, dots beyond dashed lines). (c) Comparing the
degree to which DE genes and genes with population-specific dispersion
coefficients determine the corresponding population, we find that population
specificity reflected by differential transcript usage is generally out-ruled by
population-specific gene expression (median <20%). However, the contribution
of population-specific splicing is significantly higher in African individuals (YRI)
compared to the European stereotype (EUR). (d) Functional annotations in the
GO Cellular Component category coincide well between genes with particularly
high/low splicing dispersions and DE genes: despite of minor overlap (10%),
genes of both sets affect primarily the cell’s surface. In contrast, the 5% genes
with the most constant expression levels as well as the disjoint set of genes with
significant population-specific splicing ratios encode protein products that

localize predominantly in the nucleus, organelles and vesicles.

Figure 3: Splicing in different populations and individuals. (a) The histogram
summarizes the number of genetic variants that fall into the area of a splice site
considered by our model; frequencies are decreasing exponentially with higher

number of variants in the same splice site, we observe ~1 order of magnitude
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less instances for every additional variant. (b) Variants are repressed in exonic
stretches as compared to introns, primarily due to restrictions by the coding
sequences they harbor. Splice site dinucleotides are largely exempt of annotated
variants, and population-genetic effects in the rest of the splicing motif scale
about inversely to the information content of the site consensus sequence. (c)
Derived allele frequencies of activating splice site variants are distributed
inversely compared to alleles of other types of modifications, with a substantially
higher proportion of derived alleles that are highly abundant throughout the
investigated populations. Furthermore, deteriorating/inhibiting classified
variants accumulate at low allele frequencies as compared to the frequencies of
enhancing/neutral variants. (d) Population-genetic effects on the inclusion level
observed for alternative exons (0.2< PSI < 0.8 in >75% of the population) are not
random: variants with negative splicing effects target exons that are already
mostly skipped in the reference allele (median PSI ~0.4, green curve), whereas
variants with predicted positive effects evolve at the splice sites of exons that are
mostly included in the reference allele (median PSI >0.75, yellow line). The
variant effect predicted by the model then gradually increases the observed PSI
ex-/inclusion level in genotypes with negative/positive alleles at one

respectively both sides of the corresponding exon.

Figure 4: Discovery of novel transcriptional elements. (a) The length
distribution of novel introns observed by split-mappings (grey line) follows
largely the shape of the distribution observed for introns annotated in Gencode
v12 (black line), with two main peaks for short introns (~100nt) and long
introns (~1,600nt). However, novel introns are shifted towards longer lengths
and exhibit several outliers created by very short and very long split-mappings.
(b) At exon boundaries extended by novel split-mappings (grey line), an increase
in the population-genetic variant rate similar to the one at the exon flanks they
extend (black line) can be observed. (c) Most predictions of putative cleavage
sites (PCSs, black bars) fall within annotated 3’'UTRs (dark grey bars), and a
subset of them within a 50nt proximity to annotated cleavage sites (light grey
bar). The relative overlap between PCSs and annotated 3'UTR regions,

particularly within the region of the annotated cleavage sites, improves at higher
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read coverage thresholds. (d) The boxplots summarize distances of a PCS to the
closest annotated poly-A signal, i.e.,, positive values indicate that the PCS is
downstream of the poly-A motif. Variants that produce known CPSF binding site
motifs are found in poly-A signals that are predominantly upstream of PCSs
(light grey boxplot), whereas variants that create unknown CPSF binding motifs
are found in poly-A signals that lie downstream of the closest PCS (dark grey

boxplot).
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